Problem 1. Compute the magnitude v of the velocity required for the spacecraft S to maintain a circular orbit of altitude 320 km above the surface of the earth.

Problem 2. Two smooth disks, A and B with masses $m_A = 2 \text{ kg}$ and $m_B = 4 \text{ kg}$, respectively, are sliding on a smooth horizontal surface and collide as indicated in the figure below. The coefficient of restitution is $e = 0.850$. What are the final velocities of A and B?

Problem 3. Determine the differential equation of motion for the damped vibratory system shown. What type of motion occurs? Take $k = 100 \text{ N/m}$, $c = 200 \text{ N} \cdot \text{s/m}$, $m = 25 \text{ kg}$.

Problem 4. The 20-g bullet is fired horizontally at $(v_B)_1 = 1200 \text{ m/s}$ into the 300-g block which rests on the smooth surface. Determine the distance the block moves to the right before momentarily coming to rest. The spring has a stiffness $k = 200 \text{ N/m}$ and is originally unstretched.

Problem 5. The skier starts from rest at A and travels down the ramp. If friction and air resistance can be neglected, determine his speed V_B when he reaches B. Also, compute the distance s to where he strikes the ground at C, if he makes the jump traveling horizontally at B. Neglect the skier’s size. He has a mass of 70 kg.
Problem 6. At the instant shown car A is traveling with a velocity of 30 m/s and has an acceleration of 2 m/s² along the highway. At the same instant B is traveling on the trumpet interchange curve with a speed of 15 m/s, which is decreasing at 0.8 m/s². Determine the relative velocity and relative acceleration of B with respect to A at this instant.

Problem 7. The 2-kg disk shown in Fig. 15-26a rests on a smooth horizontal surface and is attached to an elastic cord that has a stiffness $k_c = 20$ N/m and is initially unstretched. If the disk is given a velocity $(v_D)_h = 1.5$ m/s, perpendicular to the cord, determine the rate at which the cord is being stretched and the speed of the disk at the instant the cord is stretched 0.2 m.

Problem 8. Each of the three balls has a mass m and is welded to the rigid equiangular frame of negligible mass. The assembly rests on a smooth horizontal surface. If a force F is suddenly applied to the one bar as shown, determine (a) the acceleration of point O and (b) the angular acceleration of the frame.