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A B S T R A C T

Recently, the use of unmanned aerial vehicles (UAV)s for accomplishing various tasks has gained a significant
interest from both civilian and military organizations due to their adaptive, autonomous, and flexibility
nature in different environments. The characteristics of UAV systems introduce new threats from which
cyber attacks may benefit. Adaptive security solutions for UAVs are required to counter the growing threat
surface. The security of UAV systems has therefore become one of the fastest growing research topics. Machine
learning based security mechanisms have a potential to provide effective countermeasures that complement
traditional security mechanisms. The main motivation of this survey is to the lack of a comprehensive literature
review about reinforcement learning based security solutions for UAV systems. In this paper, we present a
comprehensive review on the security of UAV systems focusing on deep-reinforcement learning-based security
solutions. We present a general architecture of an UAV system that includes communication systems to show
potential sources of vulnerabilities. Then, the threat surface of UAV systems is explored. We explain attacks
on UAV systems according to the threats in a systematic way. In addition, we present countermeasures in the
literature for each attack on UAVs. Furthermore, traditional defense mechanisms are explained to highlight
requirements for reinforcement based security solutions on UAVs. Next, we present the main reinforcement
algorithms. We examine security solutions with reinforcement learning algorithms and their limitations in a
holistic approach. We also identify research challenges about reinforcement based security solutions on UAVs.
Briefly, this survey provides key guidelines on UAV systems, threats, attacks, reinforcement learning algorithms,
the security of UAV systems, and research challenges.
1. Introduction

Unmanned Aerial Vehicles (UAVs) are aircraft that are remotely
operated by human operators or autonomously controlled by onboard
computers. They have become increasingly popular in various civilian
and military applications due to their versatility, cost-effectiveness, and
ability to operate in hazardous or inaccessible environments. As with
any connected device, UAVs are vulnerable to cyber attacks that can
compromise their functionality, data security, and safety. UAVs use a
combination of communication networks, sensors, and software sys-
tems. UAVs collect and process data, control their flight, and carry out
specific missions. These systems generate and exchange large amounts
of sensitive information, such as location data, video footage, sensor
data, and control commands. Attackers can exploit vulnerabilities in
these systems to gain unauthorized access, manipulate data, disrupt
communications, hijack systems’ control, or cause physical damages.
Thus, attacks may compromise security goals of UAVs, which are
known as confidentiality, integrity, and availability [1–3].

Communication requirements of UAVs depend on the environment
which determines the security requirements of UAVs. The complex

∗ Corresponding author.
E-mail addresses: sonmezb18@itu.edu.tr (B.S. Sarıkaya), bahtiyars@itu.edu.tr (Ş. Bahtiyar).

communication environment of UAVs extends the attack surface. There-
fore, it is necessary to apply multiple security mechanisms at the same
time to ensure the security of UAVs. This circumstance necessitates the
design of new security systems. The emerging security requirements
also increase the communication cost of UAVs. Thus, the main chal-
lenge is to create a new attack detection system that supports dynamic
environmental conditions for UAVs.

UAVs interact with many networks, therefore, security solutions of
the networks should be addressed to cope with the grand challenge.
Emerging technologies such as blockchain, software-defined networks
(SDN), machine learning, fog, and edge computing have been explored
in [4,5] as part of the solution architectures. Considering the resource
constraints of drones, some blockchain-based systems [6–8] may pro-
vide a solution instead of using all properties of heavy resource required
chains. SDN technology may ensure network reliability by allowing the
controller to closely monitor data traffic in UAVs [9]. Fog computing
may be used to maintain computing capabilities near drones without
exceeding their capacity [10].
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Fig. 1. Security and reinforcement learning in UAVs.
Reinforcement learning (RL) is a subfield of machine learning that
brings a reward-driven behavior from psychology to artificial intelli-
gence that creates a powerful alternative to regular controllers [11].
RL stands out from usual control methods since it only requires a goal
definition to work and no prior knowledge about the environment or
system is required. Actions to reach the goal are chosen by RL algo-
rithms based on positive or negative outcomes of previous interactions
with the environment.

RL maps an appropriate action to each state. After performing the
assigned action, a positive or negative feedback increases or decreases
the chance of the action being chosen again. Updating mappings iter-
atively, RL finds best actions for each state to reach the goal as soon
as possible. Exploitation of experiences to select better actions among
candidates eliminates the requirement of the system or environment
models that are given in advance [12].

Deep reinforcement learning (DRL) is a promising technique that
will enhance the security of UAVs and communication networks. DRL
helps UAVs to learn from experiences and make decisions based on the
environmental feedback. On the other hand, DRL poses several techni-
cal and ethical challenges that need to be addressed. Interpretation of
learned policies, data privacy, and the potential for adversarial attacks
are possible [13]. For example, several RL applications require data
accesses, sensing the environment and collecting data, resource allo-
cations for wireless connectivity, UAV-enabled mobile edge computing
data, localization data, trajectory planning, and network security in
Multi-UAV wireless networks. Nevertheless, the absence of specific
models for security that support RL-based solutions for UAV security
requires further research. Our motivation in this research is the lack of a
comprehensive review in the literature on deep reinforcement learning
applications and UAV security.

In this research, we propose a novel survey on deep reinforcement
learning solutions to secure UAVs since traditional security methods
for such vehicles require a large amount of computational resources
and are impractical to implement in a real-time manner [14]. Our
contributions in this research are as follows.
2 
• We present a comprehensive review of reinforcement learning
techniques that provide security for UAVs.

• We provide a taxonomy of existing solutions for the most rele-
vant tasks studied as a part of security mechanisms for UAVs,
such as vulnerabilities, security requirements, cyber-attacks, and
defenses.

• We analyze potential solutions to reduce the effects of attacks
by using security controls and rules with deep reinforcement
learning for early detections of attacks.

• We emphasize practical DRL solutions for security of UAVs.
• We elaborate on open problems and future research directions

about the security of UAVs with DRL.

The rest of the paper is organized as follows. Section 2 is about
UAVs and their security requirements. The next section includes threats
and attacks in UAVs. Section 4 contains traditional defense mechanisms
applied on UAVs. Section 5 includes a detailed investigation of recent
research activities on RL-based solutions in UAV security. Then, analy-
ses of security approaches are presented in the next section. We discuss
limitations of RL-based solutions and research challenges in Section 7.
The last section is devoted to the conclusion. The general structure of
the paper is shown in Fig. 1.

2. UAV and security

2.1. UAV systems and communications

The development of UAV technology has led to the creation of
different types of drones with different shapes and weights. This sec-
tion examines the general system of UAVs and their communication
infrastructures that are vulnerable to cyber-attack. The investigation
focuses on the high-level structure and fundamental components of
a UAV system. These include the communications infrastructure of
UAVs, the Ground Control Station (GCS), and satellite communications
technologies.

In general, an UAV system consists of an unmanned aircraft, a
ground control station and a communications data link [15,16]. The
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Fig. 2. General architecture of an UAV system.
unmanned aircraft represents the core of an unmanned aerial system
and consists of an airframe, a propulsion system, a flight controller,
a precision navigation system, and a sense-and-avoid system [17].
In this research, we consider security of UAVs so we consider only
the corresponding building blocks that will create a vulnerability in
the system. For instance, an aircraft’s flight controller, communication
lines, and sensors are blocks of UAVs that may contain vulnerabilities.
The high-level architecture of a UAV system and its main elements are
shown in Fig. 2.

The flight controller is the central processing unit of a drone that is
responsible for stabilizing the aircraft during flight and collecting data
from sensors. At the hardware level, the flight controller configuration
includes rechargeable batteries, actuators, and various sensors, such as
GPS and accelerators, as well as a wireless communication module.
The software architecture consists of three layers, namely, firmware,
middleware, and operating system. The firmware issues machine code
instructions, the middleware manages communication between ser-
vices and the operating system, which is often an RTOS that handles
real-time data processing [18].

The flight controller makes communications with the ground control
station easy. The controller processes commands and translates them
into actions for actuators. Telemetric signals are transmitted to GCS via
multiple channels. The flight controller may integrate sensors or may
communicate with external units to enhance data acquisition capabil-
ities, making it a critical component of the UAV system’s distributed
embedded architecture [17] .

UAVs are not a fully self-acting artificial intelligence products, but
they are a part of the whole of the communication infrastructure.
For this reason, an UAV has to communicate with other UAVs and
ground control stations to complete its mission. The communication
lines in UAVs are shown in Fig. 3. Two types of methods are used
for the communication of UAVs [19]. The first method is to check
the movement of an UAV with signal communication. The other is the
transfer of data related to the task that the UAV should complete with
data communication.
3 
An UAV collects, processes, and transmits sensitive data according
to its usage area. Therefore, the security of data that may be related to
strategic operations, environmental surveillance, and communication
is very important. The expanding application domains of UAVs, the
huge communication options, and many implementations with differ-
ent infrastructures, such as wireless sensor networks, mobile ad hoc
networks (MANETs), Ad-Hoc Network (VANET), Flying Ad-Hoc Net-
work (FANET), and GPS make UAVs open to security attacks [20–23].
In addition, UAVs are used to communicate with each other with less
energy-consuming EMA-style protocols. Bluetooth, Zigbee, and WiFi
protocols are used for short distances between UAVs and GCS. WiMAX
and Cellular protocols are used for long distances. GPS coordinates are
used for the communication of UAVs with satellites, usually WiMAX
and Cellular communications [24].

UAVs have different network technologies for communicating with
multiple UAVs (UAV-to-UAV, U2U) and between UAVs and other sys-
tems (UAV-to-Infrastructure: U2I), such as GCS, WSN, and ground
reactors as shown in Fig. 3. Ad-hoc network is recommended as a good
solution. [25] contains key issues related to UAV communication net-
works that include characteristics of existing ad hoc networks to classify
UAV networks by topology. [26] focuses on communication between an
UAV and a GCS. They are classified technologies for communication
links, such as Zigbee wimax, IEEE 802.xx, by the range and the data
rate. The most important problem in ensuring cooperation between
Multi-UAVs is the communication infrastructure of UAVs that requires
network supports and service components. A categorization of security
risks and solutions related to FANETs and UAV communications is
presented according to the four OSI layers in [23].

The most significant attack vector of UAVs is its communication.
Specifically, it is critical for UAVs to secure wireless channels that
are vulnerable to attacks. Obviously, UAVs communicate with each
other and through the ground control station via wireless channels that
are open to various attacks. In fact, launching an attack on UAVs is
very easy. Special and critical UAV information can be accessed by
unauthorized users. On the other hand, due to the lack of security
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Fig. 3. The communication links of UAVs.
mechanisms in the applications of satellite-connected UAVs, legal ac-
cesses to the essential services may be prevented, which is a kind of
denial of service (DoS) attack. Thus, UAVs require security mechanism
to preserve confidentiality, integrity, and availability of whole system
in an UAV. Communications of UAVs are done by using data transfer
or more specifically by using signal communications. The main secu-
rity requirements for data transfer in a communication are integrity
and confidentiality. The security requirement for signal processing is
accessibility, which is sometimes known as availability.

Attacks on UAVs may endanger confidentiality, integrity, and avail-
ability of data [27] that are security requirements of the UAV system
cyber security threat model [28]. There are also cyber–physical attacks
on UAVs that have targets on the UAV network layers [29]. Attackers
targeting confidentiality have unauthorized access to the system by
capturing sensitive data or sensor data. To this end, the attacker can
listen to the communication between the UAV and the GCS, then
transmit data to other malicious actors. It may threaten security by
collecting intelligence about the task of UAVs. Such attacks are referred
as eavesdropping attacks in the literature [30].

Encryption methods are used to prevent attacks. For instance, data
on wireless communication lines must be encrypted [31]. Attacks may
disrupt integrity of data in the communication network that causes
unauthorized modification of components and tasks of UAVs. Examples
of such attacks targeting UAV data integrity are replay attacks [32]. To
prevent these attacks, hash functions, such as a message authentication
code, are used that check whether data are corrupted.

UAVs are subject to different attacks according to changing envi-
ronments, such as the network structure, coverage areas and commu-
nication channels. Specifically, an UAV is open to different types of
cyber attacks, such as jamming, spoofing, replay attacks, due to the
changing communication environments of the UAV and wireless chan-
nels. Malicious attacks may interrupt communications to reduce the
availability of UAVs. Recently, the jamming and GPS spoofing attacks
on the wireless sensor network are used to interrupt communications
among UAVs. In order to prevent these attacks, UAVs need a variable
and adaptive security mechanism. In particular, it is very important to
ensure security in the communicating area, which is critical to com-
plete the task of UAVs. Therefore, jamming and GPS spoofing attacks,
which consider the availability of UAVs and cause communication
breakdowns, are investigated by many researchers [33].

In order to provide security against attacks on UAVs, an indepen-
dent method of the environment is necessary to quickly detect attacks.
At this point, deep-reinforcement methods provide remarkable options.
DRL is suitable and the fastest route for an UAV that provides an
4 
independent environment for self-adaptation against attacks. An im-
portant summary of deep reinforcement applications in communication
networks is given in [34]. Thus, understanding and optimizing UAV
communications systems is crucial for achieving secure operations with
UAVs in a variety of applications.

2.2. Security requirements of UAV

UAVs are becoming increasingly important in various industries,
including military, agriculture, research, etc. UAVs must have strong se-
curity because they process sensitive data or operate in mission-critical
infrastructures. The basic security requirements for UAVs are authenti-
cation, integrity, confidentiality, availability, identity anonymity, and
self-stabilization.

Authentication is very important for all nodes in the infrastructure
and messages passing through the UAV network. This requirement
ensures that only authenticated nodes may participate in the routing
process. An attacker can spoof a legal node, gain access to confiden-
tial information, and even interfere with network operation without
authentication [35–37].

Integrity includes the consistency, accuracy, and reliability of data
packets. It ensures that the attacker does not alter data on the traffic or
GPS coordinates by adding, deleting, or modifying the data transmis-
sion. If the integrity mechanism of UAV network is weak, the integrity
of the entire UAVs may be at risk [35–37].

Confidentiality is the measure used to prevent sensitive information
from being visible to a wrong node or malicious node. It assures that
data is visible only to the right node. Confidentiality ensures that UAV
network, payload traffic, command and control traffic, and sensitive
information are not visible to unauthorized nodes. In the absence of
a privacy mechanism, an attacker can launch attacks by improperly
collecting sensitive information about the target [35–38].

Availability ensures that all services provided by an UAV system
are always available to authorized entities or devices within an UAV
system, even at the time of the attack. It ensures that the network has
functional and useful information, such as command and traffic control
during UAV network activity. In reality, this is difficult to achieve
due to the limitations in delays and the critical nature of an UAV
mission [35–37].

Identity anonymity ensures that an attacker cannot obtain the true
identity of users from intercepted messages in the communication of an
UAV network [36]. This requirement may be implemented as a part of
authentication system within an UAV system. Both user authentication
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Fig. 4. Security requirements for UAVs.
and packet authentication may be needed to be implemented for UAVs
that have critical missions.

Self-stabilization in UAV network communication protocols must be
able to automatically recover from any attack without the need of
human intervention. This requirement ensures that malicious packets
do not permanently damage the network [36]. DRL is a good candidate
to provide self-stabilization requirement for UAVs.

The security requirements for UAVs contain specific challenges to
be implemented, as the vulnerabilities associated with UAV operations
are diverse. It is critical to ensure that only authorized people can
access and control UAVs. Authentication mechanisms must be robust
to prevent unauthorized access. The integrity of data and instruc-
tions transmitted between the ground control station and the UAVs
is very critical. Interference with commands or data must be avoided.
Availability for UAVs is also critical, which prevents DoS attacks. The
prioritization of requirements can vary depending on specific use cases,
regulations, and the operational context of the UAV. Regular risk as-
sessments and updates on security measures are essential to counteract
evolving threats. In general, prioritized security requirements of UAVs
are shown in Fig. 4.

3. Threats and attacks on UAV

3.1. Security threats

While unmanned aerial vehicles offer innovative capabilities, they
are prone to vulnerabilities. Understanding these vulnerabilities is crit-
ical to ensuring the security and reliability of UAV operations. This sec-
tion provides an in-depth analysis of various threats and corresponding
vulnerabilities in UAVs.

Wireless Link in UAV networks uses wireless connections to send and
receive radio signals. In general, anyone can listen a frequency and
receive signals with antennas configured for specific frequencies, such
as GPS signals sent by GCS and UAVs. Specifically, GCS gives UAVs
real-time control over the communications link to a satellite (uplink)
and a command traffic. It is sufficient for attackers to simply detect
the signal and generate a noise signal in radio communications. [39]
contains an overview of applying machine learning techniques to tackle
fundamental challenges in wireless communications within the Internet
of Things (IoT) with the specific focus on the ad-hoc networking
dimension.

A Wi-fi-based communication may have vulnerabilities. If a Wi-fi-
based attack is carried out successfully and the control station does not
react quickly, the UAV will not be able to receive any command for a
certain period of time. This may cause an attacker to hijack an UAV.
Due to data connectivity capabilities, wireless connections of UAVs
often have lower bandwidth than wired networks. An attacker can
exploit this feature by sending fake packets to UAVs. These packets may
consume bandwidth and interfere with normal communication [40].

The use of radio transmission combined with a small size, a low
cost, and a limited power makes the wireless link more susceptible
to denial of service attacks. Wireless connectivity allows attackers
to actively or passively eavesdrop on communication. Attacks on a
wireless connection can come from all directions and the node can be
captured, which may cause leakage of sensitive information [41].
5 
Uncontrolled Environment in UAV networks does not have a central
authority such as a switch management system to handle incoming and
outgoing network packets, as in wired networks. Due to the lack of a
key management system, inside and outside attacks on the network are
possible. An attacker can send and receive data traffic while it is within
the transmission range of an UAV [35].

Dynamic Topology is another problem that arises with an UAV
network, where the environment prevents precisely to detect the enemy
node. It is often difficult to distinguish between a malfunctioning node
due to the dynamic topology of UAVs and a legal node that appears
to be faulty because of the poor link quality. For instance, routing
algorithms based on a topology prediction and a self-adaptive learning,
which are specifically designed to adapt to the dynamic topology of the
network, have been investigated in [42]. Future trends in security and
privacy are discussed in addition to routing, connectivity, topology con-
trol, and energy efficiency. The difference in routing cost in both cases
can be quite small. Therefore, such attacks are difficult to resolve [43].

Cooperation of routing algorithms for an UAV network require all
nodes to participate in the discovery of the topology and the transmis-
sion of data. Security transactions between nodes are ignored. When
a node searches for a route, it broadcasts the message regardless of
the recipient’s identity. Thus, an attacker could easily participate in
the routing process and it can damage the UAV network topology by
filtering or blocking the control traffic [35].

Limited Resources in UAVs represent limited information processing
and storage capabilities, which are depending on the size of an UAV.
By exploiting this vulnerability of the UAV, an attacker can launch an
attack that aims to drain the UAV’s resources, such as the battery. The
implemented security solution directly dependents on the power and
the storage capacity of UAVs. For example, the memory of an UAV must
be large enough to hold all the variables needed to run asymmetric
cryptographic algorithms. For low-power UAVs, this may be difficult
because digital signature-based authentication methods require high
computation power [44].

In the literature, there are solutions that consider vulnerabilities in
different parts of UAV systems, such as routing, partition, connectivity,
recovery, fault detection, dynamic mobility, unstable paths, power
control, resource allocation, path planning, energy consumption, and
communication overhead. For example, a k-means online learning rout-
ing protocol (KMORP) is specifically designed for ad hoc UAV networks
with a Markov mobility model [45]. KMORP is particularly effective for
specialized UAV networks as it swiftly adapts to dynamic changes in the
network environment, such as UAV mobility, interference, and signal
degradation. This approach guarantees optimal data transmissions and
communications by expertly adapting to variations. KMORP utilizes
clustering to reduce communication overheads between nodes, which
help to alleviate the network’s overall load.

An approach called Unmanned Aerial Vehicles (UAV)-assisted Net-
work Segmentation Detection and Connection Restoration (UAV-
NetRest) that covers all stages from a network fault detection to a
partition resolution is presented in [46]. The speed of a fault detection
is very important in order to avoid creating a security vulnerability. In
the detection phase, relay node locations are divided and clusters are
assigned to each UAV using k-means++ clustering. Depending on the
number of failed nodes, UAV-NetRest dynamically adjusts the number
of UAVs. In this way, network fault detection is performed quickly. The
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evaluation of the algorithm is based on the detection and the recovery
time, the distance traveled by UAVs during the operation, the number
of messages transmitted, and the deployment of the relay node.

AI-enabled routing protocols developed for UAV networks are used
to detect and prevent threats [47]. For example, a topology predic-
tive and self-adaptive learning-based routing algorithms to adjust the
dynamic network topology are used in UAVs. Similarly, the cost of
offloading for the user equipment (UE) and the energy efficiency of
the UAV system is done by using Markov decision processes in [48]. It
presents a Multi-Agent Reinforcement Deep Learning algorithm
(MADRL) based on deep learning principles. MADRL aims to optimize
power control, resource allocation, and UE association, so that it
reduces energy consumption in the system.

The exponential growth of systems that use IoT devices like in IoT
devices in health and UAV has led to use machine learning algorithms
for better decision making. However, the security threads based on the
usage of IoT devices remain [49]. Both IoT usage in health and in
UAV have similar security threats. For instance, IoT devices are used
in health systems as biomedical sensors, which have similar properties
with sensors on UAV. Since sensors may build a wireless network, a
secure wireless communication is essential [50]. Moreover, IoT based
health and UAV systems may use machine learning algorithms for
decision making, which algorithms are prone to data poisoning at-
tacks [51]. Furthermore, systematic poisoning attacks are possible for
such critical systems [52].

Understanding and mitigating vulnerabilities require a holistic ap-
proach that combines technological innovation, security measures, and
legal requirements. Ongoing research and developments are essential
to stay ahead of emerging threats in the dynamic landscape of UAV
technology.

3.2. Security attacks

UAV networks are exposed to different types of attacks. The goal
of an attack to an UAV system is to absorb and control network
traffic, interrupt the routing function, or inject malicious nodes. Various
attacks in the environment of UAV networks have been described in the
literature. For example, an overview of cyber attacks that may affect
privacy, integrity, and availability of UAV systems is presented in [53].
Security of communication links between ground control station and
drones is one of the main research focus [54]. Many articles in the
literature focus on identifying security threats so corresponding attacks
in drone communications and their corresponding countermeasures.
The synthesis of security risks in various systems sets the stage for
a discourse on key security challenges that occurred in unmanned
systems [55], such as privacy and security challenges in the Internet
of Drones (IoD).

A man-in-the-middle attack against a typical UAV used for critical
applications is a common example for attacks in UAV systems [56].
GPS spoofing attacks to manipulate the trajectory of an autonomous
UAV is another significant attack on UAV systems [57–59]. An attacker
can compromise protocols using various attack strategies. Attacks and
countermeasures for security protocols are highlighted, and a schematic
diagram of possible attacks is provided in [60]. In general, when we
evaluate all researches together in the literature, main attacks carried
out on UAVs are GPS Spoofing Attacks, False Data Injection, Jamming
Attacks, Routing Attacks, Eavesdropping, Side-Channel Attacks, Code
Modification, Code Injection, Packet Sniffing, Replay Attacks.

3.2.1. False data injection attacks
False data injection is a technique where an unauthorized person

sends copied data to the UAV to take it control as shown in Fig. 5. UAVs
are exposed to malicious data and they may not distinguish between
real and malicious data. To perform a false data injection, attackers
typically take control of UAVs by injecting fake data into the UAVs’
sensors using attackers’ sensors.
6 
Fig. 5. False data injection attack on UAVs.

Countermeasures. There are many countermeasures depending on the
application of the UAV. In [61], a new algorithm is introduced to detect
a data injection attack of a UAV bug. An adaptive neural network is
used to detect errors injected into the sensors of the UAV. An integrated
Kalman filter is used for in-line adjustment of the neural network
weights. This inline setting makes intrusion detection faster and more
accurate. Samy et al. introduce an NN-based system model for the
fault detection process [62]. In this work, the system identification is
achieved through the offline learning process, so the fault detection
process does not need model data during the operation. A NN-based
flaw detection design for failures of actuators on a satellite is presented
in [63]. Shen et al. presented a neural network-based fault detection
technique that takes into account the latency between a fault detection
and a fault compliance [64].

3.2.2. Routing attacks
An adversary attacks existing routing protocols to reduce the per-

formance of an UAVs network or change its topology [35]. An attacker
can degrade the performance of the UAV network by corrupting the
routing algorithm or launching a DOS attack. An UAVs network’s
topology may be altered by adding non-existent nodes to routing tables,
creating a fake route connection. In the literature, routing attacks may
be explained within a controlling network traffic, interrupting routing
functions, or injects malicious nodes. However, routing protocols may
be exposed to different types of attacks. In literature, path discovery
attacks, path maintenance attacks, and data transmission phase attacks
based on their basic routing functions are analyzed as routing at-
tacks [65]. [35] contains attacks on the routing protocol in a classified
manner.

Countermeasures. In these types of attacks, cryptographic methods and
intrusion detection systems are used by an UAV on a communication
line. For example, the Security Sensitive Temporary Routing (SAR)
protocol uses security metrics in Route Request Packet (RREQ) [66].
It also uses a shared secret to generate a symmetric encryption key. A
location-based routing solution to provide authentication and privacy is
possible [67]. An anomaly-based detection mechanism that learns from
the statistical analysis of different RREQ packet rates and calculates the
threshold instantly is proposed in [68].

3.2.3. Eavesdropping attacks
In an eavesdropping attack, the attacker passively or actively inter-

cepts network communications to access secret information on an UAV
network, such as node ID numbers, routing updates, or application-
sensitive data. An attacker can use this private information to com-
promise network nodes, alter routing, or reduce application perfor-
mance. Active eavesdropping aims to attack the main channel by
reducing the channel capacity. Active spy transmits interference noise
and simultaneously and independently captures spy signals [69]. Some
eavesdroppers relay on the interference of a legitimate receiver, while
others intercept the nosy.

Countermeasures. Encryption is the standard defense against eaves-
dropping attacks. Due to limited processing power of some UAV sys-
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tems in wireless communications, they cannot efficiently handle the
standard encryption methods used in typical wired networks [70].

3.2.4. Side channel attacks
A side-channel attack refers to the disclosure of useful information

about the internal execution of a system, either with transmitted data or
via alternative routes. This type of attack obtains information indirectly
by exploiting information leakage. Examples of side-channel attacks on
UAVs include acquisition and analysis of meteorological information,
power consumption, electromagnetic dissipation, acoustic signal analy-
sis, and residual data. Defense against side-channel attacks includes the
use of asynchronous processing units and mechanisms that help reduce
electromagnetic emissions. The temporal information of the Unmanned
Autonomy Systems communication channel is strongly associated with
sensitive internal states, such as the number of UAVs.

Countermeasures. Two possible solutions can be used to counter side-
channel attacks [71]. Unmanned Autonomy Systems may randomize
the temporal information of packets by generating redundant packets
within random time intervals. While this solution may eliminate the
loss of confidential information from the communication channel, it
may in turn reveal the existence of the Unmanned Autonomy Systems
communication channel, which may allow other attacks, such as a sig-
nal interference. On the other hand, Unmanned Autonomy Systems can
use traffic transformation to statistically make Unmanned Autonomy
Systems traffic patterns indistinguishable from the traffic patterns of
popular network applications, such as web clients or messengers [72].
Additionally, side-channel resistant implementations on devices in an
UAV may help to have better security. For instance, Edwards Curve
Digital Signature Algorithm (EDDSA) based on the Ed448 targeting the
ARM Cortex-M4-based STM32F407VG micro-controller on IoT devices
in an UAV system may help to prevent side channel attacks on UAV
systems [73]. Since current systems have been expected to be broken by
the advent of quantum computing, post quantum solutions are expected
to be implemented for critical systems, such as cryptographic accel-
erators for digital signatures that provide high performance Ed25519
architecture [74]. Integrated countermeasures to high performance
post quantum computing and their optimized version are expected to
be emerging implementations on IoT devices for UAV systems [75].

3.2.5. Code injection attacks
After gaining access to the UAV networks and control units, an

attacker can inject malicious code into the control units. Malicious
payloads such as viruses, Trojan, and spyware may also infiltrate anti-
malware software with this approach. UAV controllers may also inject
code when one or more UAV components or subsystems are incompat-
ible, in hopes of improving their vehicle’s performance or misleading
regulatory examination.

Countermeasures. The defense against code injection attacks may be
applying an intrusion detection system. In this case, the access con-
trol system should only grants permissions to authorized personnel.
Additionally, UAVs may not include vehicle owners under certain
circumstances that case need to be carefully considered [76].

3.2.6. Replay attacks
A replay attack may destroy cyberphysical systems, including UAVs,

even without knowing the external structure. The replay attack is
basically shown in Fig. 6. Replay attacks are the simplest attack that
can be implemented for malicious purposes. An attacker records and
covers transmitted data from a network perspective, compromising
closed-loop capabilities of cyber–physical systems and degrading sys-
tem performance.

Countermeasures. A countermeasure against replay attacks is a record-
ing horizon control law to address the attack on the communication
7 
Fig. 6. A replay attack on an UAV.

Fig. 7. A jamming attack on an UAV.

network between the controller and the actuators [77]. Under band-
width constraints, a secure fusion prediction scheme for cyber–physical
systems against replay attacks has been proposed in [78]. Based on this
detection measure, a stochastic play approach has been developed to
reduce the loss of the control performance [79].

3.2.7. Packet sniffing attacks
A packet sniffer may intercept and log traffic transmitted over a

communication link. This type of attack is derived from a tool that is
commonly used to diagnose network-related problems. An attacker can
use a packet sniffer to spy on unencrypted data in packets to gather
information.

Countermeasures. Possible defenses against packet monitoring include
the application of encryption techniques to protect the confidentiality
of packets in transit, as well as distribution techniques to secure and
authenticate sent and received communication signals [76].

3.2.8. Jamming attacks
In UAV systems, jamming attacks are defined as electromagnetic

energy emitted in a deliberate direction to a communication system
to interrupt or prevent the transmission of the signal [80] as shown in
Fig. 7.

A jammer may be anything, such as from being a single specially
equipped transmitter to all jamming stations. The goal of broadcast
jammers is to reduce availability in a secure system. A comparative
analysis of the various jamming techniques is discussed in [81].
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Fig. 8. A GPS spoofing attack on an UAV.

Countermeasures. Classical countermeasures are block jamming at-
tacks, moving away from the disrupted field hopping frequency, dis-
tributed attack detection, distributed secure predictions, and statistical
approaches in wireless sensor networks [82,83]. Especially in VANETs,
classical countermeasure methods are not always applicable due to high
mobility and the wide network topology.

3.2.9. GPS spoofing attacks
The Global Positioning System (GPS) is typically used to provide

UAV navigation information and time information. However, GPS is
subject to many deliberate threats. For example, an attacker can mis-
lead a GPS receiver with false GPS signals as shown in Fig. 8. First,
a reliable navigation system is required for new autonomous systems
based on the standalone UAV. GPS sensors are the most widely used
navigation sensors for high-performance flights in UAV navigation
systems. In military applications, GPS signals are encrypted to prevent
unauthorized use and spoofing. However, the current civil GPS signal
is transparent and easily accessible worldwide, making GPS-guided
civilian infrastructures vulnerable to various frauds or broadcast jam-
mers [84–86]. There are also experimental studies to examine the GPS
signal generation process and effects of spoofing signals on UAVs [87].

Countermeasures. The recommended countermeasure is to prevent
spoofing attacks on civilian UAVs is to encrypt GPS signals. However,
this is quite costly since it requires significant upgrading of the infras-
tructure. There are various anti-spoofing techniques to detect a false
signal. The control of WLAN interaction points, a cross-check detection
control, an activation of an alarm system when the ratio between
the signal strength and the noise exceed a certain threshold is one of
them [88].

There are more advanced attacks on GPS that are relatively difficult
to detect. For example, a receiver-based spoof system is more complex,
which consists of a GPS receiver that is combined with a phishing trans-
mitter. The generated signal is synchronized with real GPS signals [31].
Research is carried out to confirm whether the error between the UAV
model estimator and the real signal is fake or not [89]. Threshold-
based methods often increase the complexity of software and hardware.
Moreover, the detection of a spoofed signal is not guaranteed when
there is a very sophisticated spoof. Therefore, innovative and effective
approaches are needed to secure GPS services in UAVs.

4. Traditional defenses for UAVs

UAVs are vulnerable to a variety of attacks, including data intercep-
tion, malicious data injection, jamming, and spoofing. These attacks
may lead to a loss of control over the UAV, data theft, or damage
to the UAV itself. Various defense techniques have been developed
to prevent these attacks, including encryption methods, authentication
mechanisms, and intrusion detection systems. This section provides an
overview of these techniques against security attacks on UAVs as shown
in Fig. 9.
8 
Fig. 9. A summary of defense techniques for UAV security.

Encryption and authentication. Basic defense techniques against secu-
rity attacks on UAVs are encryption and authentication. Encryption
ensures that data is transmitted securely by encoding it in a way
that only authorized users can decipher. Authentication ensures that
only authorized users are allowed access to the UAV, its control sys-
tems, and its data. Cryptographic techniques are used to guarantee
confidentiality, integrity, and availability of the system. Specifically,
symmetric cryptographic protocols are employed to safeguard sensitive
information, such as text, audio, video, and images. In these protocols,
both the sender and receiver have a shared key for both encryption and
decryption purposes.

Asymmetric security protocols use a pair of distinct keys, namely a
public key and a private key, for encryption and decryption of data by
the sender and receiver, respectively. Unlike symmetric protocols, the
confidentiality of the public key is not a critical issue, since encrypted
data cannot be decrypted using the same key. Hence, a private key is
always necessary for data decryption.

A lightweight authentication protocol is a security protocol designed
to provide authentication of data or entities while minimizing the
overhead on the system resources, such as memory and computational
power. These protocols are particularly useful for resource-constrained
devices such as UAVs, where traditional cryptographic protocols may
be too heavy to be implemented. The goal of a lightweight authen-
tication protocol is to provide sufficient security with minimal sys-
tem resources. These techniques are commonly used to protect data
transmitted between the UAV and the ground control station [90].

Encryption techniques in flying UAVs are also used to prevent
attacks that cause hardware failures [60]. Thus, an enemy is pre-
vented from obtaining confidential data. An authenticated encryption
mechanism is used against eavesdropping attacks in similar cases [91].
Additionally, there are secure communication schemes against replay
attacks [60,92].

Secure transmitter systems against hijacking, eavesdropping, and
Distributed Denial-of-Service (DDoS) attacks are implemented using
encryption methods. A System Development Life Cycle (SDLC) is used
with a prototyping approach, which is implemented using three pro-
totypes in [93]. The proposed scheme employs an Android application
for a web platform and Advanced Encryption Standard (AES) algorithm
for secure transmissions. Security tests have shown that the proposed
scheme may resist attacks with a high success rate. The User Acceptance
test has also confirmed that the application used for the secure trans-
mission meets the user’s requirements. In [94] proposed a method to
verify the authenticity of data, which ensures that data were sent by the
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original GCS and not by any unauthorized source. The proposed method
uses asymmetric protocols to protect the integrity of data transmitted
between different sensors or devices.

Hash algorithms are used in various parts of protocols to provide
security for UAVs. For example, the verification of signatures after
data is received by the recipient uses hash algorithms as in [95]. The
UAV performs the verification process to ensure the confidentiality
of data before doing an action. A 164-bit hash is generated using
the SHA-1 algorithm on the sender side for verification of data. The
generated hash is then encrypted using a public key and then sent to
the recipient. The receiver uses a private key to decrypt the encrypted
hash value. Then, it calculates the hash value from the data from the
original message. The two checksums are then compared to verify the
authenticity of the message.

Elliptic Curve Encryption is one of the significant cryptographic al-
gorithm that is used in many protocols. In [96] proposed a lightweight
recognition mode for authentication using Elliptic Curve Encryption
(ECC) against UAV network attacks. The proposed approach is de-
signed to protect against different types of security attack, such as
message eavesdropping, fake identity, and replay attacks on a UAV
network. The approach uses several security measures, such as an ECC
digital certificate for UAV identification credentials, ECDSA for UAV
identification and signature verification, and the Elliptic Curve Diffie
Hellman (ECDH) algorithm for session key negotiation during drone
communication.

Lightweight security protocols are important for security of UAVs
because the protocols consume relatively small amount of energy. In
[97] proposed a lightweight security protocol for IoD networks called
Temporary Credential Based Anonymous Lightweight Authentication
Scheme (TCALAS) that is limited to a single flight zone. This uses
a threat model and an authentication. The protocol also includes a
Ground Station Server (GSS), remote drones, a mobile device, and
a control room. An upgraded version of the protocol is introduced
in [98], which may provide security against various attacks and be
implemented in multiple flight zones. The network model of the pro-
posed scheme consists of a GSS, a control room, drones with related
flight zones, and a drone user. The proposed scheme provides security
features, such as anonymity and non-traceability of the user, mutual
authentication, and robustness. This version of the protocol has also
been shown to be faster to complete the entire authentication process.

Traditional security mechanisms use symmetric and asymmetric
cryptography to implement security services. One of the significant
threats to these services is the advent of quantum computing that
requires post-quantum algorithms to be implemented and integrated to
security services. UAV systems already use security services. Therefore,
efficient implementations of post-quantum algorithms with different
technologies, such as FPGA, are needed to protect UAV systems [99].
For example, high-speed NTT-based polynomial accelerators for post-
quantum cryptography are required [100]. Another implementation
may be on ARM Cortex-M4 [101]. A more detailed analysis of post-
quantum computing is presented in [102], which covers quantum
computing and post quantum computing for blockchain. All of these
security services are expected to be implemented for UAV systems.

Intrusion detection systems (IDSs). (IDSs) are another technique used
o defend against security attacks on UAVs. These systems monitor
he UAV’s data traffic and alert the operator if any unauthorized
r malicious activity is detected. IDSs may also monitor the UAV’s
hysical environment, such as detecting any attempt to tamper the
AV’s hardware or software. In this paper, intrusion detection systems
re examined in three categories.

1. Rule based IDS: Rule-based intrusion detection is performed. In
this category, rules following the expected behavior of the UAV
system are applied on UAVs to perform special tasks [103]. Rule
based IDS sets specific rules and policies that define network be-
havior. Any deviation from these rules is detected as a potential

intrusion.
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2. Signature based IDS: This category involves the comparing net-
work traffic with a known signature database or known attack
patterns. If a match is found, an alarm is triggered and the
intrusion is detected. A Bayesian-based technique for detecting
insiders and removing malicious nodes from the network is
presented in [104]. The technique includes activating an in-
trusion detection mode for various nodes and calculating the
false behavior rate (MR) for nearby UAVs. If the threshold is
lower than MR, the intrusion detection system starts monitor-
ing nearby nodes and detects intrusions. The intrusion removal
system determines the MR of a node, and if its threshold is less
than the MR, the node is declared rogue and it is removed from
the network.

3. Anomaly-based/Machine Learning-based IDS: This category
involves detecting known and unknown attacks based on learn-
ing or filtering mechanisms. The working principle of Anomaly-
based/Machine Learning-based IDS is identifying unusual or
anomalous behavior in the network. It uses statistical analysis or
machine learning algorithms to distinguish the normal behavior
and detects any deviation from the normal behavior. Machine
learning (ML) algorithms have two phases, namely training and
testing. The model is trained to predict future events using
training data in training phase. The testing phase uses vari-
ous strategies to measure the model’s accuracy. A summary of
ML-Based Identities for UAV Security is given in Fig. 10.

Each IDS method has advantages and disadvantages. For example,
signature-based IDS is effective for detecting known attacks but it
is weak against new or unknown attacks that change their patterns
frequently. If one bit changes, the signature changes, too. Anomaly-
based IDS may detect unknown attacks, but they may also suffer from
false positives and false negatives. A more efficient IDS is to use a
hybrid detection approach that combines two or more approaches for
the accurate detection of unknown attacks [105]. A hybrid IDS can
strike a balance between the two and is often the preferred approach
for UAV security.

Recently, ML-based IDS becomes popular. For example, a machine
learning-based IDS was proposed against GPS Spoofing attacks in [106].
The recommended method includes the one-class support vector ma-
chine and ML autoencoder algorithms. A method for detecting eaves-
dropping attacks on UAV communication is presented in [107]. The
method uses K-mean clustering and support vector machine (SVM)
algorithms that may learn from existing data and make decisions for
future samples. The technique consists of two phases. In the first phase,
both parties send signals to the UAV. In the second phase, the UAV
transmits the same signals to a third party to detect any deviation. A
dataset is created and classified using machine learning algorithms to
identify potential attacks.

ML-based IDS is used against signal spoofing and jamming attacks.
In [108], Self-Teaching (STL) with a multi-class SVM is used to main-
tain a high true positive rate for IDS. It uses Deep-Q Network, a deep
reinforcement learning algorithm for the drone dynamic route learning
as a self-healing method in the IDS recovery phase. The proposed
solution collects data from UAV components, such as flight logs and
reading data from sensors. However, a real-world application of UAVs
is difficult due to the limited power and a lack of enough computational
resources.

A convolutional neural network (CNN) method is used to detect
jamming signals in [109]. The UAV algorithm takes into account the
weights and values of GCS, selects a relay power element based on Bit
Error Rate (BER), and uses the boost and randomly selected values to
send a message. While the algorithm may protect communications and
jamming attacks, randomly selected relay power may increase the error
rate, making it expensive.

Several machine learning-based security frameworks have been in-

troduced in the literature to address a variety of security issues, such as
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Fig. 10. A summary of ML-based IDS for UAV security.
malicious drone detection and DoS attack prevention for UAVs [110].
Some recent research has shown that federated learning techniques
may be more effective than traditional machine learning algorithms.
For example, there are reports on the development of radio frequency-
based UAV authentication models using IoT networks [111].

A Lightly Distributed Detection Scheme aims to detect and mitigate
flooding attacks in the Internet of Drones (IoD) environment that is
explained in [112]. The scheme uses the concept of automatic count
reports, where each drone counts the number of packages it sends in
a given time interval and shares that report with other drones during
contacts. Receiver drones store reports and send them to nearby ground
stations to check consistency and detect flood attacks.

Specific attacks may require specific countermeasures. Protection
against specific attacks is achieved through path planning, with il-
lustrative examples in [129]. An airway-aware protection mechanism
(IoD-JAPM) against jamming attacks (JA) on the Internet of Drones
(IoD) is presented, including an analysis of airway availability and
potential modifications on drone path planning. Specifically, IoD-JAPM
effectively uses jamming attacks on all drones in the presence of a
jammer. The approach contains three key stages, which are airway
analysis, risk region (HR) discovery, and route planning generation.

A hybrid IDS model integrating spectral traffic analysis and a robust
controller/observer for anomaly estimation within UAV networks is
presented in [113]. The IDS is created against DDOS attacks. The
hybrid method takes into account, in its initial phase, a statistical
representation of the network’s traffic. By analyzing the newly created
signatures, anomalies may be determined with an appropriate model to
accurately estimate the anomalous traffic.

A summary of the state of the art on attacks and countermeasures
is given in Table 1. We observe that each attack focuses on a different
target on UAVs and violates different security requirements. Therefore,
it is important to note that a single defense technique is not sufficient to
protect UAVs from security attacks. A combination of these techniques
must be applied to provide comprehensive security to UAVs. Moreover,
the power consumption and battery usage must be evaluated according
to the target of the attack to determine potential countermeasures.
In addition, the defense techniques used should be regularly updated
and tested to ensure that they are effective against the latest security
attacks.
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5. Reinforcement learning and UAV security

This section contains a comprehensive review of the state-of-the-art
Deep Reinforcement Learning (DRL) based techniques in the field of
security in UAVs. In addition, basics of RL techniques are given to make
better understandable how RL techniques are used in UAV security.

5.1. Reinforcement learning

Reinforcement learning describes machine learning algorithms that
try to find optimal behavior in an environment that maximizes the
accumulative reward. A common structure of reinforcement learning
for UAVs is shown in Fig. 11. The decision-making process controls
the environment that is often considered a Markov Decision Process
(MDP) [11]. An MDP consists of a set of states S, which may be
finite, infinite, or continuous, a set of executable actions, which can
be discrete or continuous, a transition probability, which describes the
dynamics of an agent interacting with its environment, and a reward
function at a given initial, final state after taking a certain action.

Classic RL algorithms have limitations when large-scale problems
need to be solved with RL algorithms. For example, many classic RL
algorithms require to maintain a value look-up table for each state or a
state–action pair [11]. Thanks to the recent advances in computational
power, Deep Learning (DL) overcome this limitation. Most of the time,
RL algorithms use Temporal Difference Learning and Q-learning for
Actor-Critic models.

Temporal Difference (TD) learning consists of a transition model
and a reward function with policy evaluation [130]. The state value
function of MDP, 𝑉𝜋 (𝑠), is calculated as follows.

𝑉𝜋 (𝑠) = 𝐸[
∞
∑

𝑡=0
𝛾 𝑡𝑅(𝑠𝑡)|𝑠0 = 𝑠, 𝜋] (1)

In the standard dynamic programming approach, 𝑉𝜋 (𝑠) is computed
as follows.

∀𝑠 ∶ 𝑉 (𝑠) ← 𝑅(𝑠) + 𝛾
∑

𝑠′
𝑃 (𝑠′|𝑠, 𝑎)𝑉 (𝑠′) (2)

A stochastic version of the state function is as follows.
′ ′
pick some state 𝑠 ∶ sample 𝑠 ∼ 𝑃 (𝑠 |𝑠, 𝜋(𝑠)) (3)
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Table 1
Attacks and countermeasures for UAV security.

Ref. Vulnerability Attack Target Defense Security requirement

[92], [60] Wireless Link DOS UAV Network Authenticated Encryption Confidentiality, Authentication

[93] Wireless Link Hijacking, Eavesdropping,
DDOS

IOD Communications AES Algorithm Availability, Authentication

[94] Automatic Dependent
Surveillance Broadcast
(ADS-B)

Jamming, False Injection Air Transportation System Asymmetric Encryption Authentication, Integrity

[95] ADS-B Data Spoofing Air Transportation System ECC, ECDSA Algorithm Confidentiality, Authentication

[96] Wireless Link Eavesdropping, Replay
Attacks, Fake Identity

UAV Network ECDH Authentication using
ECC

Confidentiality ,
Authentication

[97] Wireless Link Identity Attack, GSS or
Remote Drone Impersonation
Attack, Replay Attack

IOD Network TCALAS Authentication

[98] Public Communication Link,
Power Analysis Leakage,
Public servers and users

Identity Guessing Attack,
Impersonation Attacks, Replay
attack, Man in the Middle
Attack, Remote Drone Capture
Attack

iTCALAS IOD Network Anonymity, Non-traceability,
Authentication, Robustness

[106] A wide variety of sensors,
broadcasting fake GPS signals

GPS Spoofing UAV Sensors One Class Vector Machine,
Autoencoder (ML based IDS)

Confidentiality Integrity,
Authenticity, Availability, and
Accuracy of GPS data

[107] Wireless Link Eavesdropping UAV communication K-means, support vector
machine (SVM) algorithms
(ML based IDS)

Authenticity

[108] Broadcasting fake signals Jamming, Signal Spoofing UAV communication Self-Teaching (STL) with a
multi-class SVM (ML based
IDS)

Accuracy, Sensitivity and
Specificity, Confidentiality

[110] Wireless Link DOS UAV communication SVM, CNN Identify

[111] Radio Frequency (RF)
vulnerability

Privacy-Preserving, Data
security

IOT Network Federated Learning Authentication

[112] Storage space, Packets Size Flooding Attacks IOD Environments Lightly Distributed Detection Identify

[113] Changes of network topology,
mobility

DDOS Attacks UAV ad-hoc
communication

Hybrid IDS Model Availability

[114], [115],
[116]

Radio Frequency Vulnerability Jamming Cognitive Radio Network DQN Availability

[116] Large-scale dynamic network,
high mobility

Jamming VANET PHC Availability

[117] Dynamic Radio Environments,
wireless link

GPS Spoofing Wireless Network Q Learning, Dyna-Q Authentication, Identify

[118] Wireless Link Jamming IOT Networks DDPG, TD3 Robustness, Availability

[119] Wireless Connectivity Jamming Multi-UAV Cellular
Network

TD Learning Availability

[120] Radio Frequency Vulnerability Eavesdropping, Jamming Multi-UAV Cellular
Network

MDP, Double DQN Stability, Availability

[121] Offloading System Jamming UAV Communication
Network

DDPG Availability, Confidentiality

[122] [123] Wireless Link Eavesdropping UAV Communication with
RIS

TTD3 Confidentiality

[124] Wireless Link Eavesdropping IRS-assisted UAV covert
communication system,

TAP-DDQN Confidentiality

[125] High Mobility, Large Scale
Network Topology

Jamming VANET PHC Availability, Confidentiality

[126] Broadcasting Incorrect GPS
Spoofing

GPS Spoofing Authentic Signal Received
from GPS Satellite

Game-Theoretic Security
Mechanism

Reliability

[127] Energy consumption,
computation capacity and
network delay

DOS, Offloading attacks Unmanned Aerial Vehicle
Edge Computing (UEC)
network

Stackelberg Game-Theoretic
Security Mechanism

Availability

[128] Openness of Networks DOS, Unauthorized Access
Attacks (R2l, U2r), Probe
Attack

UAV Network (NSL-KDD
Cup dataset)

DRL-BWO Algorithm Availability
11 
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Fig. 11. General structure of reinforcement learning for UAV security.
𝑉𝜋 (𝑠) ← 𝛼(𝑅(𝑠) + 𝛾𝑉 ′
𝜋 (𝑠)) + (1 − 𝛼)𝑉𝜋 (𝑠) (4)

where 𝛼 is the step size. A possible step size is 𝛼𝑘 = 1
𝑘 for the 𝑘’th time

for an update.
Convergence is the stochastic version of policy evaluation that con-

verges to the true value function under certain assumptions. The fol-
lowing assumptions are sufficient conditions.

• every state is often visited infinitely.
• 𝛼 satisfies ∑∞

𝑘=0 𝛼𝑘 = ∞; ∑∞
𝑘=0 𝛼

2
𝑘 < ∞.

In practice, a reason to use TD for policy evaluation could be that
we do not have the transition model available. The samples are then
generated by executing the policy and by performing stochastic value
function updates according to the states that are visited.

TD only considers policy evaluation. If we are interested in finding
a near-optimal policy, we can use TD as the policy evaluation step in
policy iteration as follows.

Iterate:

• Run TD to perform policy evaluation, which gives us 𝑉𝜋 (𝑠), ∀𝑠.
• Pick a new policy 𝜋, such that 𝜋(𝑠) = arg max [𝑅(𝑠)+
𝛾
∑

𝑠′
𝑃 (𝑠′|𝑠, 𝑎)𝑉 (𝑠′)]

Iterate:

∀𝑠, 𝑎 ∶ 𝑄(𝑠, 𝑎) ← 𝑅(𝑠) + 𝛾
∑

𝑠′
𝑃 (𝑠′|𝑠, 𝑎) max

𝑎′
𝑄(𝑠′, 𝑎′) (5)
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Similarly to TD learning, we can run a stochastic version instead for
k = 0, 1, 2,. . . , as follows.

𝑄(𝑠, 𝑎) ← (1 − 𝛼𝑘)𝑄(𝑠, 𝑎) + 𝛼𝑘(𝑅(𝑠) + 𝛾
∑

𝑠′
max
𝑎′

𝑄(𝑠′, 𝑎′)) (6)

The stochastic version does not require a priori knowledge of the
transition probability distribution 𝑃 or the reward function 𝑅. It is
sufficient to have access to a trace. The stochastic version may converge
to the true 𝑄 function under the same assumptions as in TD.

• every state is often visited infinitely.
• 𝛼 satisfies ∑∞

𝑘=0 𝛼𝑘 = ∞; ∑∞
𝑘=0 𝛼

2
𝑘 < ∞.

In practice, one can ensure that all reachable states are visited
infinitely often by using an 𝜖 greedy policy;

with probability 𝜖 ∶ choose an action at random
with probability 1 − 𝜖 ∶ 𝑎 = argmax

𝑎
𝑄(𝑠, 𝑎)

Another popular way to choose the actions is computed as follows.

pick action 𝑎 with probability exp(−𝑄(𝑠, 𝑎)∕𝑇 )
∑

𝑏 exp(−𝑄(𝑠, 𝑏)∕𝑇 )
(7)

In Eq. (7), 𝑇 is the temperature and it determines how greedily the
actions are being chosen. A natural choice decreases the temperature
over time. Note that the temperature 𝑇 and factor 𝛼 need not be the
same for all states. For instance, one could have these variables that
depends on how often the current state 𝑠 has been visited.
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Fig. 12. An example for DQN.

Q-learning. is one of the commonly used algorithms to solve the MDP
problem. The actions are obtained for every state that is based on an
action-value function. Q(s, a) is defined with the value of the state
(s) and action (a) pair for attacks in communication networks. R(s)
is the reward function of the current state. P(s’|s, a) is defined as the
probability of the transition from the actual state–action pair to the
next attacking state in a threat condition. V(s’) is the value of the next
state. Q(s’, a’) can be defined as the value of the next state (s’) and next
action (a’).

𝑄(𝑠, 𝑎) = 𝑅(𝑠) + 𝛾
∑

𝑠′
𝑃 (𝑠′|𝑠, 𝑎)𝑉 (𝑠′) (8)

We can run dynamic programming, such as value iteration, by
performing the Bellman back-ups in terms of 𝑄 function as follows [11].

𝑄(𝑠, 𝑎) ← 𝑅(𝑠) + 𝛾
∑

𝑠′
𝑃 (𝑠′|𝑠, 𝑎) max

𝑎′
𝑄(𝑠′, 𝑎′) (9)

Deep Q networks. When states are discrete, Q-function can be easily
formulated as a table. This formulation becomes harder when the
number of states increases, and may be impossible when the states are
continuous. In such a case, the Q function is formulated as a param-
eterized function of the states, actions pairs Q(s; a;w). The solution
is required to find the best setting for the parameter w. Using this
formulation, it is possible to approximate Q-function by using a Deep
Neural Network (DNN). In this setup, the problem will be an opti-
mization problem. DNN may minimize the Mean Square Error (MSE)
of Q-values using Gradient-based methods Stochastic Gradient Descent
(SGD) [131]. Fig. 12 shows an example of a Q-learning mechanism from
a neural network perspective.

5.2. Reinforcement learning for UAV security

RL-based solutions in UAV security cover a wide range of ap-
plications, including strategies for the protection of cyber–physical
systems and communication technologies, autonomous attack detection
methodologies, and solutions that are based on game theory principles.
13 
In the literature, attacks have targets on all components of the UAV
network infrastructure. Therefore, there is a need for environment inde-
pendent methods to detect various attacks quickly. Deep Reinforcement
Learning methods have huge potential to detect attacks on UAV systems
in a faster manner. DRL may also provide the most convenient coun-
termeasures for UAVs by ensuring a self-adaptation that is independent
from the environment and resists to many attacks. A summary of
deep reinforcement learning applications in communication networks
is presented in [34]. In this paper, we discuss the recommended re-
inforcement learning applications for detecting jamming and spoofing
attacks targeting communication in UAVs.

In modern broadcast jammer prevention techniques, an attack-free
self-learning protection system protects the communication with deep
reinforcement learning. In the literature, broadcast jamming attacks
have been discussed in different communication environments, such as
Cognitive radio network (CRN), WSN, 5G, GPS, VANET, and MANET
in UAV. Deep reinforcement learning techniques vary according to the
area of usage in UAV systems. For example, DRL effectively decides
power allocation, relay or not, channel selection, user selection, and re-
source allocation. Moreover, different reinforcement learning practices
may adapt very quickly in natural environments.

Broadcast-busting attacks may have disruptive consequences for
UAVs. Although there are solutions to prevent broadcast-busting at-
tacks, they are inefficient in most cases [114]. DL methods may help to
create efficient solutions, such as a dynamic game computational radio
channel model against jamming attacks in Deep-Q-Network (DQN)
communication. DQN can be used to control the power in a jamming
attack targeting the communication [115]. In this case, devices decide
to transmit energy by performing the selected action. The Signal to
Interference Noise Ratio (SINR) value is measured in a time frame
and it is calculated at the end of that time frame. The news channel
is tuned in Universal Software Radio Peripherals (USRP). A reactive
jammer calculates the utility to select the blocking power that is based
on the final transmitted power of the transmitter. At each time slot, the
disruptor observes the final SINR and then selects the parasitic power
that can be exploited with a greedy strategy. The transmitter selects
and adjusts the transmit power in each time slot and transmits data
packets to the radio station. It selects the transmission power according
to the DQN algorithm to improve the SINR of the transmitter and
reduce the energy loss. DQN-based power control strategy improves
communication efficiency compared to the Q-learning-based strategy.

Game theory and Q-learning are used to avoid smart jammers, who
are targeting UAV communications in VANETs. For example, a game
model against jamming is proposed in [116]. In the game, the UAV
decides whether to transmit the message while choosing the smart
jamming strength. The transmission decision of the UAV depends on
the channel quality and Bit Error Rate (BER). An initial anti-disruptive
transfer strategy, which is called Policy Hill Climbing Algorithm (PHC)
algorithm, is used to obtain the optimum transfer strategy without
knowing the VANET model and the compression model [132]. This
model reduces the BER in VANET and increases the utility of the UAV
compared to the Q-learning-based transmission strategy [125].

UAVs use 5G networks for their communications. Jamming preven-
tion is critical in UAV communications with 5G networks. In this case,
it is recommended to move the transmitter away from the faulty area to
prevent broadcast jamming, which may interrupt the communication or
simply creates communication problems. If 5G networks are used, it is
recommended for the UAV to use a fast DQN, learning techniques, deep
learning, deep reinforcement learning, and transfer learning together to
decide the transmission power control mechanism without knowing the
broadcast jammer and the 5G network model [133].

A game-based defense mechanism against GPS spoofing attacks for
civilian UAVs is possible as in [126]. For example, a zero sum game
using the Stackelberg methodology to represent strategic interactions
between security agents deployed in UAVs and potential attackers

targeting the Unmanned Aerial Vehicle Edge Computing (UEC) network



B.S. Sarıkaya and Ş. Bahtiyar Ad Hoc Networks 164 (2024) 103642 
is presented in [127]. This non-cooperative game requires security
agents to protect UAVs and all communication links, which include
U2U communication between UAVs and U2I communication between
UAVs and infrastructure. It is possible to detect spoofing attacks faster
and in more adaptive manner by using Q-learning [117].

Black Widow Optimization (BWO) algorithm, which is specially
designed for UAV networks, is used with a DRL technique for opti-
mization purpose in [128]. This approach aims to improve the intrusion
detection performance of UAV network attacks. BWO algorithm is used
for parameter optimization of the DRL technique, which provides better
intrusion detection performance in UAV networks. The effectiveness of
the technique is validated using NSL-KDD dataset. The DRL technique
includes a reinforcement learning-based Deep Belief Network (DBN)
developed for intrusion detection that allows the identification of in-
trusions into UAVs from networks. Furthermore, the BWO algorithm is
used to determine the optimal values of the hyper-parameters within
the proposed model. Analyses results show highly precise values which
confirm the effectiveness of the approach.

In [118], a novel DRL-based approach for trajectory planning and
interference rejection of an UAV in Internet of Things applications is
presented. The radio environment is enhanced to suppress interfering
signals and extend the desired signals using a re-configurable intelligent
surface (RIS). Using Deep Deterministic Policy Gradient (DDPG) and
Double Delay DDPG (TD3) models, the UAV autonomously learns its
trajectory and RIS configuration based solely on changes in the received
data rate. The simulation results show that the proposed DRL algo-
rithms provide robust resistance to UAV interference, especially with
the TD3 algorithm that provides faster and smoother convergence than
the DDPG algorithm for larger RISs. Notably, this DRL-based approach
offers important practical benefits by eliminating the need for explicit
knowledge about RISs and disruptive channels.

Collision-free paths for multiple UAVs connected to cellular net-
works are explored by providing connectivity with Ground Base Sta-
tions (GBS) in the presence of a dynamic jammer in [119]. The problem
is formulated as a sequential decision challenge in a discrete space,
taking into account connectivity, collision avoidance, and kinematic
constraints. Authors present an offline time difference (TD) learning
algorithm that is combined with online SINR mapping as a solution
approach. Specifically, an offline network is created and trained using
the TD method to capture interactions between UAVs and the environ-
ment. Additionally, an online SINR mapping based DNN is designed
and trained through supervised learning to capture the influence and
changes caused by the block. The numerical results show that even
without any mixer knowledge, the proposed algorithm achieves per-
formance levels comparable to the ideal scenario with a perfect SINR
map.

Secure communication between a UAV and a ground user in an
urban environment is a significant requirement. was investigated.
In [120], the stage includes several spies and a UAV jammer that
generates artificial noise to disrupt spies’ activities. The goal is to max-
imize stealth rates at the physical layer by co-opting the trajectory and
transmission power of the UAVs. To handle the time-varying channel
conditions, the problem is formulated as a Markov decision process.
An advanced algorithm based on the double DQN is proposed to solve
MDP. The simulation results show that the rapid convergence of the
algorithm in various environments allows the UAV transmitter and UAV
jammers to accurately determine the optimal locations to maximize
information privacy rates. Furthermore, the performance comparison
shows that the Double DQN (DDQN) algorithm outperforms the Q-
learning and Deep Q-learning Network approaches. In another research,
a secure evacuation system consisting of an end server, a ground control
station, and a malicious eavesdropper UAV is presented [121]. The goal
here is to maximize privacy by offering a UAV that may dynamically
switch between scrambling and transfer modes. An algorithm based on
a deep deterministic policy gradient (DDPG) is proposed to achieve the

goal.
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A physical layer security (PLS) in millimeter-wave rotary wing un-
manned aerial vehicle communication using re-configurable intelligent
surfaces is explained in [122]. Having multiple listeners and imperfect
channel state information (CSI) may create a security problem in an
UAV. To solve this problem, DRL is used to make real-time decisions
in any time frame considering the dynamic UAV environment. To
address continuous optimization variables, authors present a twin-
twin-lag deep deterministic policy gradient (TTD3) approach, which
maximizes the expected cumulative reward and improves the safe
energy efficiency (SEE). The results demonstrate that the proposed
method outperforms the traditional deep deterministic policy gradient
twin DRL (TDDRL)-based approach.

A new framework with deep reinforcement learning for radio surveil-
lance, in which a fixed-wing UAV is used to capture the radio finger-
print of a suspicious transmitter with the help of a benign Reconfig-
urable Intelligent Surface (RIS), is presented in [123]. The framework
includes a newly designed TD3 model, which enables the UAV to
learn both its trajectory and the RIS configuration that is based solely
on the observed transmission rate of the suspicious transmitter. This
research includes a fixed-wing UAV. Action and reward components
are customized to suit the UAV’s mobility constraint. Simulations
demonstrate that the method offers the UAV reliable radio surveillance
ability while it also keeps the desired distance from the UAV to the
transmitter.

A covert communication system is used with intelligent reflective
surfaces (IRS) in UAVs in [124]. The goal of the research is to improve
the performance of confidential communications. Authors propose a
new algorithm called Double Deep Q Network-based Orbit and Phase
Optimization (TAP-DDQN). They can improve stealth communication
performance by optimizing the 3D trajectory of the UAV and the phase
configuration of the IRS. Through simulations, they demonstrate that
TAP-DDQN outperforms reference solutions and leads to significant
improvements in the stealth performance of the IRS-powered UAV
stealth communication system.

In [134], authors present a framework that uses RL algorithms to de-
tect intrusions in Mobile Unmanned Wireless Networks (MUWNs). The
paper identifies three main categories of attacks on MUWNs, which are
jamming, impersonation, and intrusion. Impersonation attacks involve
attackers posing as UAVs within the MUWN to offer deceptive services
or maliciously acquire data. Intrusions involve the direct upload of
malicious software to the target MUWN. The authors present a case
study which is based on DDPG algorithm to demonstrate how RL can
be applied for intrusion detection.

Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algo-
rithm, known for its effectiveness in multi-agent situations, is proposed
to overcome the obstacles presented by collaborative mixing and trajec-
tory design in a scenario where multiple UAVs operate together [135].
UAVs fall into two categories. One category serves as aerial Base
Stations (BSs) that transmit data to users, while the other one serves
as jammer that emits fake sounds to disturb listeners on the ground.
The proposed system assumes that UAVs have information about lo-
cations of both ground users and eavesdroppers. Training for both
groups of UAVs is performed using MADDPG to dynamically change
their position and maximize the combined safety ratio of all ground
users. The safety ratio for a ground user is determined by subtracting
the maximum acceptable signal-to-noise ratio for the entire ground
eavesdropper from the received signal-to-noise ratio. Simulation re-
sults show that an efficient joint orbit design of UAVs is achieved by
MADRL method. To improve learning efficiency and convergence, the
Continuous Action Attention MADDPG (CAA-MADDPG) method is also
presented. The simulation results show that CAA-MADDPG outperforms
MADDPG and provides better reward performance.

In [136], a multi-UAV is used to receive signals from a ground
station. There are some UAV jammers near the target that try to
interfere with UAVs to reduce their received SINR. In this research, an

UAV is considered as a unique system, such as an agent that is trained



B.S. Sarıkaya and Ş. Bahtiyar Ad Hoc Networks 164 (2024) 103642 
by RL algorithm, while jammers adjust their transmission powers and
positions depending on predefined strategies. UAVs only use RSS and
SINR to make decisions. A Q-learning-based model is trained by using
RSS, SINR, and predicted trajectories of jammers, which are called
knowledge-based RL. Although the location of the jammer is unknown,
the agent can estimate the jammer trajectory based on the change of
the RSS value with the distance and the flight inertia of the jammer.

A ground node sends confidential information to a legitimate UAV
while a smart UAV eavesdropper is present that is able to adjust
its position for an optimal eavesdropping [137]. The legitimate UAV
and the eavesdropper are both treated as conflicting agents. The goal
of the legitimate UAV is to maximize the total security while the
eavesdropper’s aim is to minimize security. The problem is redefined as
a two-player zero-sum stochastic game (TZSG). Findings demonstrate
that the legitimate UAV strategically chooses a communication link
away from the Eavesdropper while the Eavesdropper seeks to intercept
confidential information.

DRL helps UAVs to safely perform their duties by adapting them-
selves to the environment without the need for costly infrastructure
changes. The DQN-based channel selection strategy may improve com-
munication efficiency compared to the Q-learning-based strategy. In the
literature, there are solutions against different attacks on UAVs using
deep reinforcement methods, such as DQN, game theory, PHC, and
actor–critical methods.

6. Analyses of security approaches

RL algorithms have been used to secure UAVs. However, the algo-
rithms have been applied to ensure different security requirements in a
various ways in UAV systems. In this research, we have compared the
use of RL algorithms in UAV security according to different strategies.
We consider strategies developed with RL algorithms for security UAVs.
Table 2 contains a comparison of strategies, their limitations, and
evaluation criteria. In general, it has been observed that RL algo-
rithms provide better solutions to reduce security vulnerabilities ın
UAVs. Specifically, RL algorithms are used for resource allocations,
power sharing, trajectory optimizations, delay decisions, any other
optimizations that can be used to detect attacks. Some limitations
of RL algorithms are also discussed to show the applicability of the
algorithms. Additionally, state–action-reward values are analyzed are
related to the technical infrastructure of RL algorithms that are very
significant for attacks. Table 3 contains RL algorithms that are used
in UAV security in a comparative manner. Detailed explanations of RL
algorithms that are used in UAVs security are given below.

• Q-Learning: This is a value-based algorithm that learns to predict
the expected benefit from taking a certain action in a given
situation. Q-learning algorithm uses a lookup table or Q table
to store the expected rewards, which are known as Q values, for
actions given a set of states. Q-learning requires a lot of memory
when the number of cases and actions increase.

• DQN: Advantages of DQN include its ability to work with high-
dimensional state spaces and to provide effective results for dis-
crete action space. Limiting features of DQN are an overesti-
mate of Q-values and inadequate policies. DQN also converges
slowly. Moreover, it is affected by sample inefficiency in complex
environments.

• Double DQN (DDQN): This algorithm uses two Q networks to
reduce overestimation bias. Double DQN improves the learning
efficiency and the stability of the algorithm [139]. DDQN algo-
rithm provides more accurate and stable Q-value estimates than
DQN. However, it requires additional computational resources
due to maintaining two networks.

• TRPO: This is a policy-based algorithm that uses a trusted zone

to improve the stability and the convergence. The trusted zone
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defines a constraint on how much the updated policy may de-
viate from the old policy. This circumstance avoids major policy
changes that may cause instability [140]. Advantages of TRPO are
managing continuous areas of actions and having access to consis-
tent and reliable policy updates. However, it is computationally
expensive due to the multiple iteration requirement.

• DDPG: It combines value-based and policy-based methods while
maintaining separate networks of actors and critics. DDPG is an
effective algorithm to handle continuous spaces. On the other
hand, it requires careful tuning of hyper-parameters and scanning
strategies [141]. Advantages of DDPG algorithm are a combina-
tion of Q-learning and policy gradient methods and it provide
good performance in complex environments. It may also manage
areas of continuous action. However, it suffers from instability
during training stage. Therefore, it is difficult to train the al-
gorithm in environments with an high-dimensional state space.
Thus, DDPG requires a careful balance between exploration and
exploitation.

• TD3: The core concept of Twin-Delayed Deep Deterministic Policy
Gradient (TD3) is used to mitigate an overestimation bias that
is inherent in Deep Q-Learning. Particularly, this case occurs
in scenarios that contain discrete actions within an Actor-Critic
domain [142]. TD3 improves the sample efficiency and stabil-
ity. It is also robust in continuous motions. However, hyper-
parameter tuning may be necessary for an optimal performance.
Additionally, it may be sensitive to some environmental con-
ditions. TTD3 is built on the success of TD3 and it may offer
improved performance, but computing requirements are higher
than TD3.

• MADDPG: This algorithm is designed for scenarios where multiple
agents are learning simultaneously. MADDPG framework uses
a training approach, where all agents are trained together, but
each agent operates independently during the execution. In this
context, each UAV acts as an individual agent. Observations and
actions of all agents are used during the training stage. More-
over, each agent makes decisions based on its observations and
the evaluated value during the execution stage [143]. MADDPG
is suitable for multi-agent scenarios with a centralized training
and a decentralized execution. It provides a stable training in
complex and dynamic environments. Additionally, MADDPG may
handle scenarios where agents have partial visibility. However,
the computational complexity and training sensitivity to are main
disadvantages of the algorithm.

Each algorithm has its own strengths and weaknesses. The choice
of any algorithm depends on specific requirements of UAVs and char-
acteristics of the environment. Hyper-parameter tuning, computational
efficiency, adaptability to different scenarios, resource consumption,
and high-dimensional state spaces are important facts that determine
the choice of an algorithm in UAV systems.

7. Limitations and research challenges

7.1. Limitations

This section contains limitations of RL-based solutions available in
the literature. Understanding the limitations will help researchers to
create the most suitable and affordable countermeasures against vari-
ous threats and attacks on UAVs. The limitations of RL-based solutions
are shown in Fig. 13.

Limited training data. DRL algorithms require significant training data
to learn effectively policies. However, it can be a challenging task to
label training data for different attack scenarios and create countermea-
sures for security of UAVs. Moreover, it may not be feasible to obtain
real-world data for all possible attack scenarios that will be used with

DRL models.
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Table 2
RL-based strategies for UAV security.

Ref. RL techniques Strategy Limitations Evaluation

[59] DQN using CNN Power Allocation Highest computational
complexity

Secrecy capacity, energy
consumption cost

[115] DQN using CNN Power Control Noise power, energy loss Improves the signal-to-
interference-plus-noise

[116] Hotbooting PHC Relay Small region, high
computation, communication
overhead

Lower BER, higher utility

[117] PHY-authentication, Q
Learning

Spoofing detection Dynamic radio environment False alarm rate and miss
detection rate

[118] DDPG, TD3 Trajectory planning and
jamming rejection

Non-convexity and sequential
decision-making nature

Mission time, received data
rate

[119] TD Learning Jamming-resilient path
planning and trajectory
designs

Connectivity and collisions in
dynamic environment

Success Rate, Disconnection
Rate, Collision Rate

[120] DDQN Optimizing UAV trajectory
and transmission power

Large state space, multi-agent
environment, computational
complexity, complicated data
transmission

Secrecy rates, convergence
speed

[121] DDPG Relay decisions and offloading
decisions

The generalization and the
robustness

Secrecy sum-rate

[122] TTD3 optimization of flight
trajectory, UAV active
beam-forming and RIS passive
beam-forming

Multiple listeners and
imperfect channel state
information

Worst-case secrecy energy
efficiency (SEE)

[123] TTD3 RIS configuration and UAV
navigation

Multi-UAV radio surveillance Average eavesdropping success
probability and average
eavesdropping rate

[124] TAP-DDQN Improve the covert
communication performance

More complex covert
communication scenarios,
multiple UAVs, dynamic
eavesdroppers

Average covert rate

[125] Hotbooting PHC Relay Transmission cost, the radio
channel condition

Convergence speed, higher
utility, reduce the exploration
trials

[126] PLASH PBE (Game Theory) Decide the true position Assumptions about rationality Reduce the deviation between
the estimated position and the
true position

[128] DRL-BWO Intrusion detection Scarcity of UAV-specific Data,
data imbalance

High precision, recall,
F-measure, and accuracy
values

[138] DQN using CNN Relay Power Service outages, energy
exhaustion, secure relay

BER (Bit-Error-Rate), Save the
UAV Energy Consumption

[135] DDPG Intrusion Detection Computing-constrained mobile
devices

Detection rate

[135] MADDPG Trajectory Design, Power
Optimization

Large number of UAVs and
jammers

Improve the learning
efficiency and convergence,
security rate

[136] Q-Learning Power strategy Expensive and difficult to
interact with real environment

Average utility, distance
change of the mission UAV,
reward value

[137] TZSG Optimizing the legitimate UAV
trajectory, transmit power
control and node scheduling

Uncontrollable mobility Sum secrecy rate
Complexity of the UAV security environment. Securing UAV systems is a
complex task because the environment may be dynamic and uncertain.
RL algorithms generally assume a known static environment, which
may not provide accurate security results for various UAV scenarios.
Enemies can adapt and change their attack strategy. UAVs may be
affected by external factors, such as the environment and weather con-
ditions. Incorporating such complexities into RL models is a significant
challenge that needs to be addressed.
16 
Security issues. RL algorithms learn by trial and error, which may
create security risks in UAV applications. Incorrect actions or policies
learned from RL models may have disastrous consequences, includ-
ing deadlocks or unauthorized access to critical systems. To counter
security issues strict testing and verification procedures are required.

Adversarial attacks. RL models are vulnerable to adversarial attacks.
Attackers can manipulate the training process or exploit vulnerabilities
in RL algorithms. This circumstance may mislead RL models or simply
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Table 3
Comparisons of RL approaches for UAV security.

Ref. RL algorithms States Actions Rewards Attacks Targets

[114] DQN PUs, SINR Move or Stay Utility Jamming Cognitive Radio
Network

[115] DQN SINR Power Transmission SINR Jamming IoT Communication

[116] PHC Link Quality, SINR,
BER

Relay Decision Utility Jamming VANET

[117] Q Learning False Alarm, Miss
Detection Rate of
Authentication

Test Threshold Utility GPS Spoofing Dynamic Radio
Environments

[118] DDPG, TD3 Relative Position,
Velocity, SINR

Test Threshold reflecting
coefficients,
acceleration

GPS Spoofing Dynamic Radio
Environments

[119] TD Learning Information vector,
observable state of
nearest UAVs,
experienced SINR

Agent’s current speed,
orientation, the
kinematic constraints

A function of the
minimum distance
to other UAVs

Jamming Multi-UAV Cellular
Network

[120] MDP, Double DQN Location of each UAV,
legal UAV, and jammer
UAV

moving speed,
transmitting power

A function of the
minimum distance
to other UAVs

Jamming Multi-UAV Cellular
Network

[121] DDPG Coordinates of each
UAV nodes, horizontal
distance between legal
UAV, and jammer UAV

Horizontal and vertical
velocity of the legal
UAV

Maximization of the
secrecy sum-rate

Eavesdropping Physical Layer
Security

[122] TTD3 Predicted
comprehensive channel
state information from
UAV and
eavesdroppers, local
information,

Flying directions Maximization of
secrecy energy
efficiency

Eavesdropping Physical Layer
Security

[123] TD3 Relative position Reflecting coefficients
of the RIS and
acceleration of the UAV

Eavesdropping rate
maximization,
destination, velocity
constraint, altitude
constraint

Eavesdropping Radio Environment

[124] TAP-DDQN Coordinates of the
current UAV

Horizontal and vertical
coordinate, the binary
indicator showing that
the UAV is in service,
continuous flight time

Maximization of
power signal

Eavesdropping Wireless
Communication
System

[134] DDPG UAV behaviors Detection strategy at
each time step (binary
value)

System utility Jamming,
impersonation,
intrusion attack

Mobile Unmanned
Wireless Networks

[135] MADDPG Represent the current
3-D position of the
agent, and the index of
the objective GU

UAV’s velocity
projections on three
orthogonal coordinate
axes and the signal
power of UAVs

Map limitation
penalty, secure rate,
power penalty and
distance reward

Jamming Mobile Unmanned
Wireless Networks

[136] Q-Learning Maneuvering state
(position and speed),
channel state (allocate
power for UAV an
jammer)

Power distribution
actions and
maneuvering actions
(stay, forward,
backward, left, right,
left front, right front,
left back, and right
back)

Minimum SINR
requirement for the
receiver, complete
the mission, ability
to flexibly

Jamming Mobile Unmanned
Wireless Networks

[137] TZSG Position and speed
state and node
scheduling state

Communication and the
power control action,
UAV action contain
speed

Some constraints
(max speed, min
distance between
two UAVs)

Eavesdropping Physical Layer
Security
cause undesired behaviors in executions of UAVs. Adversarial attacks
targeting RL-based security solutions pose a significant challenge for
UAV systems. Thus, robust defense mechanisms are needed to counter
such attacks.
17 
Transferability and generalization. RL models trained in a single en-
vironment may not be generalized to be used in new and unknown
environments. UAV security scenarios may vary significantly. Training
a RL model in one context may have poor performance results in a
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Fig. 13. Limitations of UAV security.

different context. The development of RL algorithms that may transfer
information and adapt to new environments without extensive training
is a challenge for UAV security.

Explainability and interpretability. The interpretation of DRL models is
often hard process that makes it difficult to understand. A DRL based
decision-making process of an agent is therefore hard to interpret.
On the other hand, it is critical to have transparent and explainable
models to identify potential vulnerabilities in UAVs to address them
effectively. The development of interpretable RL models may provide
insight about the logic of the UAV decision process, which may help to
reduce vulnerabilities.

Computational complexity. DRL algorithms, especially those which are
based on deep neural networks, may be computationally intensive and
they require significant computational resources. If RL-based security
solutions are applied on resource-constrained UAV platforms, the com-
putational complexity may limit the solutions. Moreover, DRL based
solutions may not provide real-time results, which may be unaccept-
able for UAVs that have critical tasks. Therefore, the development of
lightweight and efficient RL algorithms suitable for UAV environments
is a significant research challenge.

Limitations and security challenges must be addressed to counter
security attacks on UAVs’ systems. This situation requires collabo-
rative efforts between researchers and industry experts. The efforts
contain advanced data collection about UAV systems, new algorithmic
developments, security assurances, correct interpretations and stan-
dard definitions, and guidelines for implementing RL-based security
solutions in UAV applications.

7.2. Research challenges

This subsection contains analyses of potential research avenues
about UAV vulnerabilities, threats, and attacks and their RL based
solutions. In this research, the main focus of the research is improving
the security of UAV communications and networks, where there are
various threats and attacks. Fig. 14 shows the security challenges in
UAV systems.

The use of deep reinforcement learning algorithms for UAV security
is a relatively new and rapidly developing topic. Therefore, there are
many avenues for future research challenges on the security of UAVs
with RL. Some of the challenges are presented in [34]. For example,
18 
Fig. 14. Security challenges for UAVs.

DRL requires users to report the local state at every time slot to
determine the state in density networks. On the other hand, networks
are expected to be deployed in a high density around a base station,
where received signal strength indicators may be the same, which is a
significant challenge for security of UAVs.

Knowledge about jammer’s channel information is another research
challenge. The reward function of an UAV requires a perfect knowledge
about channel information of the jammer, which case is impossible in
practice. However, the reward function need to be formulated. The lack
of information about the channel makes it impractical to model the
reward function.

Training and performance evaluations of DRL models are other
challenging tasks for UAV security. The reason is that data are inacces-
sible in some wireless systems. Currently, many models use simulated
datasets that are created with simulations. Creating UAV data with
simulations may simplify the execution of an UAV system, which may
not represent a real UAV system. Thus, the newly created RL based
countermeasure may be effective against attacks.

A RL based security model created for complex environments is
another research challenge. The complexity of an environment may
prevent the RL model to adapt real-world scenarios. Therefore, design-
ing DRL algorithms that support complex environments and provide
robust real-world solutions is an important research challenge.

The lack of dynamic power load balancing within the UAV charging
system introduces a significant performance overhead. This circum-
stance leads to problems including a power drain, a battery degra-
dation, which results in the overall performance degradation [16].
Consequently, the need for optimized and efficient charging systems
becomes a key challenge in this case. Addressing this challenge re-
quires the development of solutions that may dynamically balance
power loads, mitigate the associated problems, and optimize the overall
performance of the charging system.

The limited battery capacity and the limited endurance of UAVs
require improved power management strategies to ensure resilience
in both survival and starvation scenarios [144]. The need to opti-
mize power efficiency is a critical challenge. Additionally, the power
management is critical to extend the overall lifetime of UAVs. Ad-
dressing this challenge involves improving the adaptation of power
resources, thereby increasing endurance and making UAVs survivable
under changing operational conditions.

Using transfer learning for an UAV security is another research
challenge. Transfer learning involves pre-training a model and then
adapting it to the new environment. In this model, training data are
limited. Transfer learning may be used to improve the efficiency of DRL
algorithms for the security of UAV systems. In this case, the challenge
is to adequately pre-training the model.
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Hybrid RL models have huge potential to counter threads and
attacks in UAV systems. However, creating a hybrid RL based secu-
rity solution for UAV systems is an important challenge. Combining
DRL models with other machine learning algorithms are expected to
increase the effectiveness and the efficiency of DRL based security
solutions for UAV systems. On the other hand, combining many ma-
chine learning algorithms with DRL models increases the complexity
of the security solution, where the probability of having vulnerabilities
increases.

Real-time decision-making is another significant research challenge
for the security of UAVs. In many cases, attackers use real-time in-
teractions with UAV systems that require real-time responses from
intrusion detection systems or simply from security countermeasures.
Designing RL algorithms that make decisions in real-time according to
some constraints of UAVs, such as hardware and the communication
latency, is a significant challenge. Balancing the trade-off between the
decision speed and the accuracy is critical for an effective security
implementations.

The grand challenge is to secure the whole UAV systems with the
most effective and the most appropriate security mechanisms. Conven-
tional security mechanisms reduce the attack surface on UAV systems.
However, they do not completely remove all threats or prevent attacks
on UAV systems. DRL based security solutions help to reduce the attack
surface on UAV systems. Similarly, DRL-based security solutions have
research challenges that need to be solved before DRL based security
solutions are applied on UAV systems.

8. Conclusion

This paper provides a systematic review about the security of un-
manned aerial vehicles focusing on deep reinforcement learning based
solutions. UAVs have been used more than ever in almost all envi-
ronments. The vehicles are highly connected devices over various net-
works. Moreover, they run various algorithms to complete their tasks
autonomously with limited resources, such as power and computing
capabilities. This makes UAVs vulnerable to cyber attacks. Conven-
tional security mechanisms do not provide an adequate security level
for UAVs in many cases. Recently, machine learning based security
solutions complement conventional security solutions.

In this article, a comprehensive review of UAV systems’ communi-
cations is provided since many security threats and attacks are based on
the network and the communication infrastructure of an UAV system.
The general architecture of an UAV system is explained to make clear
threat sources in UAVs. Moreover, types of communications in UAV sys-
tems with their security mechanisms are presented to show the current
state of the art about communication options in UAVs. Additionally,
security requirements of UAV systems are analyzed to show the need
for reinforcement-based security solutions for UAVs.

Security attacks depend on security threats. A security attack is
possible if there is at least one corresponding security threat. In this
research, the main security threats and attacks on UAV systems are
explained in a holistic way. Threats are first defined by considering
environment properties and other facts to show the source of attacks
in details. Then, common attacks on UAVs are explained with vul-
nerabilities they use. Furthermore, countermeasures in the literature
against such attacks are examined to reveal requirements for defense
mechanisms in UAV systems. Furthermore, traditional defense mecha-
nisms applied on UAVs are investigated to extract deficiencies of the
mechanisms.

Deep reinforcement learning based security solutions in the litera-
ture are investigated as complementary solutions to traditional security
mechanisms applied on UAV systems. First, DRL are explained to
show their capabilities and limitations. DRL based security solutions
in literature implemented on UAVs are explained in detail to show
the current state of the art about the solutions. Then, a comparative
19 
analysis of reinforcement learning based security solutions in UAV sys-
tems is presented to show the power of such solutions. Furthermore, we
explore the limitations of DRL based security solutions. Finally, some
interesting research challenges are discussed to improve the security of
UAV systems.
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