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Increasing global energy consumption also raised concerns about environmental issues. Solar energy is
one of the most promising sustainable solutions for this problem. However, due to the dynamic behavior
of environmental conditions, energy conversion efficiencies of Solar photovoltaic systems decrease con-
siderably. Therefore, to extract the highest energy from photovoltaic systems, the use of maximum power
point tracking methods is a necessity. Under partial shading conditions where local maximum power
points also occur, global maximum power point tracking is required. In this study, fundamental concepts
for photovoltaic systems, conventional maximum power point tracking methods, modern maximum
power point tracking methods – which can perform global optimization under partial shading conditions
– based on automatic control and artificial intelligence approaches, and advantages and disadvantages of
all these methods are provided briefly. Also, a comprehensive review, including more than a hundred
prestigious studies carried out on these methods in the last decade is presented categorically and chrono-
logically. Further, discussion and evaluation of reviewed methods in various aspects are given in a nut-
shell. This study aims to be a guide that may be useful for interested consumers, producers, and
researchers and shed light on the last decade of maximum power point tracking methods for photovoltaic
systems.
� 2023 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

With the effects of the world population, which has increased
by 50% during the last three decades and growth in the production
sector, electrical energy consumption has followed a continuous
upward trend. While the total global electrical energy consump-
tion was at the level of 10.9 PWh in 1990 [1], it has reached 24.7
PWh level by the year 2021 [2]. Due to the sustainability issue that
arose with the rapidly increasing demand for electrical energy and
the environmental awareness that has increased by the last half-
century, the use of alternative renewable energy resources in the
production of electrical energy has gained more importance. As
from the signing of the Kyoto Protocol in 2005, the amount of elec-
trical energy which is generated from renewable energy resources
has started to rise rapidly. While wind and Solar power generation,
which constitutes 77% of renewable electrical energy generation,
except hydropower, was only around 33.3 TWh in 2000; increasing
by more than 50 times in the last two decades, it has reached to 2.9
PWh by 2021, and its share in total electrical energy production
has changed from 1.4% to 13.2% [1,2]. As of 2010, the highest
increase in renewable electrical energy production is recorded in
Solar energy [2].

The modular structure of the Solar photovoltaic (PV) systems
enables the use of these systems in various sized applications,
which ranges from Solar power generation facilities to the small
domestic applications. By extension, with competitive efforts to
reduce the costs in Solar PV technologies and the increase in the
number of global Solar PV module providers, it is expected that
the modules will get significantly cheaper. Hence, it is foreseen
that Solar PV systems will continue being a fast-growing renew-
able electrical energy generation technology in the upcoming three
decades [2]. During this process, in connection with the Solar PV
systems, there exist substantial and challenging issues, such as
the development of Solar cell manufacturing technologies, provi-
sion of continual maximum power transfer, and the smart storage
of the generated electrical energy.

Improvement of Solar cell manufacturing technologies is an
important and developing research topic for material science and
chemical engineering. Smart energy storage has become a novel
and one of the most promising concepts in the energy manage-
2

ment field, particularly the increasing trend to renewable energy
systems. On the other hand, maximum power transfer is a well-
studied research topic in renewable energy technologies, especially
Solar PV systems.

For Solar PV systems, lots of methods called maximum power
point tracking (MPPT) to track the maximum achievable power via
the system and to transfer the generated power into the load with
maximum efficiency have been introduced and developed in a few
decades. In this study, a comprehensive review ofMPPTmethodolo-
gies, which have been developed and used in the last two decades,
will be presented. First, in Section 2, information about Solar PV sys-
tems will be provided in brief. Then, a review of conventional MPPT
methods widely used during the last two decades will be given in
Section 3. Later on, in Section 4, various modern MPPT methods,
including relatively complex control and optimization algorithms
that can handle certain issues of conventional MPPT methods, will
be presented and reviewed. In further, the overall evaluation and
interpretation of MPPT methodologies covered in this study will be
discussed inSection5. Finally, theconclusionwill brief themaincon-
tributions of this study in Section 6.
2. Solar photovoltaic systems

The performance of Solar PV systems highly depends on both
external and internal factors. To utilize a PV system effectively, at
first, current–voltage (I-V) characteristics of the system should be
well-determined both theoretically and practically, and this
requires good mathematical modeling for the system. Robustness
of performance of a PV system under rapidly changing environ-
mental conditions like partial shading (PS) is another critical issue.
To deal with this issue, global maximum power point tracking
(GMPPT) algorithms that can perform global optimization for the
best operating point of the PV system have been developed. In this
section, fundamentals about PV systems and MPPT methods are
introduced. At first, a generic mathematical Solar PV model is pro-
vided in Section 2.1. Then, the concept of operation under partial
shading condition (PSC) and basics of maximum power point
tracking in PV systems are covered in brief under Section 2.2 and
Section 2.3, respectively.



Fig. 1. Solar PV cell model.

Fig. 2. Solar PV array model connected in series and parallel [10].
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2.1. Solar photovoltaic cell model

SolarPVcells produceelectrical energybasedona semiconductor
with a p-n junction,which is like the diode concept [3].When a Solar
Fig. 3. Typical I-V and P-V charac

3

PV cell exposes to Solar radiation, incident photons are absorbed by
the junction. Since the absorbed photons transfer their energy to the
electrons on the valance band, the energized electrons start tomove
freely, and thereby thismovement leads toDCflowwhenanexternal
load is connected. Thus, a generic model for a PV cell may simply be
represented by using a current source paralleled with a diode and
two resistors that one is shunt and the other is connected in series.
A generic Solar PV cell model is given in Fig. 1.

For the PV cell model shown in Fig. 1, the output current of the
PV cell IPV is expressed in 1ð Þ in terms of the diode current ID, the
current through the shunt resistor IShunt and the current generated
by absorbed photons IS [4].

IPV ¼ IS � ID � IShunt ð1Þ
where VPV is the output voltage of the PV cell, I0 is the saturation
current of diode, a is ideality factor of the diode, RShunt is the shunt
resistance, RSeries is the series resistance, T is the absolute tempera-
ture in K, q is the elementary charge, and k is the Boltzmann’s con-
stant; ID and IShunt are given by 2ð Þ and 3ð Þ respectively.

ID ¼ I0 e
qVPVþRSeriesIPV

akT � 1
h i

ð2Þ
teristics of Solar PV array [3].



Fig. 4. Solar PV array under uniform insolation and different PS patterns [15].

Fig. 5. Solar PV array output I-V and P-V characteristics for the corresponding conditions in Fig. 4.

C.R. Çırak and Hüseyin Çalık Engineering Science and Technology, an International Journal 43 (2023) 101436
IShunt ¼ VPVþRSeriesIPV
RShunt

ð3Þ
When 2ð Þ and 3ð Þ are substituted into 1ð Þ, I-V characteristic of a

PV cell can be represented as in 4ð Þ [5,6].

IPV ¼ IS � I0 e
q VPVþRSeries IPVð Þ

akT � 1
� �

� VPVþRSeriesIPV
RShunt

ð4Þ

Equation 5ð Þ provides an expression for the current generated
by absorbed photons in terms of Solar irradiance on the surface
of PV cell S and temperature T where IS;STC , SSTC and TSTC denote
the values of the same parameters in standard test conditions
(STC) as SSTC ¼ 1000W=m2, TSTC ¼ 298K , air mass is AM1.5, and
KT represents the temperature coefficient for the short-circuit cur-
rent of the PV cell [5,6].

IS ¼ S
SSTC

IS;STC þ KT T � TSTCð Þð Þ ð5Þ
As it is seen from 4ð Þ and 5ð Þ an increase in Solar radiation level

directly leads to an increase in the short-circuit current of the PV
cell and maximum output power level as well. However, an
increase in temperature causes a major decrease in the open-
circuit voltage of the PV cell while it is slightly increasing the
short-circuit current, and it leads to a decrease in the maximum
output power level [6].

In Solar PV systems, PV modules are combined and configured
in compliance with the desired system output as regarding the
requirement of the application. PV modules may be combined as
a PV array with series and/or parallel connections where parallel
connected cells increase output current, and series connected cells
increase the output voltage. An expression for the I-V characteristic
of a Solar PV array, where nS and nP respectively denote the num-
4

bers of series and parallel connected PV modules, is given by (6 Þ
[4,7]–[9]. PV array model, and I-V and power-voltage (P-V) charac-
teristics for the PV array are given in Fig. 2 and Fig. 3.

IPV ¼ nP IS � I0 e
q VPVþnS

nP
RSeries IPVð Þ

nSakT � 1

" # !
�

np
ns
VPVþRSeriesIPV

RShunt
ð6Þ
2.2. Operation under partial shading condition

Partial shading condition refers to the case that a Solar PV mod-
ule is exposed to nonuniform irradiation levels due to different
shading levels on different cells in the PV array [6,10]. Shading
may stem from a cloud, fallen leaves on the PV module, or any
obstacle such as tree or building depending on the direction of
Sunlight. In a shaded PV cell, which gets no or low irradiation,
the photon current decreases as shown in 5ð Þ. The other cells con-
nected in series with the shaded PV cell compensate for the
decreasing photon current by forcing the internal diode of the
shaded cell to operate in the avalanche breakdown region. This sit-
uation leads that the shaded cell acts as a load and consumes the
generated power internally [7,11]. Consumed power may also
cause irreversible damage to the shaded PV cell due to the increas-
ing temperature [12,13]. To overcome these issues, and protect the
PV module, bypass diodes seen as Fig. 4 are connected in parallel
with each PV cell in the array. The shaded PV cell, which acts as
load, can be shorted via the bypass diode under PSC. Thus, further
voltage-drop at the output and power consumption in the cell is
prevented, and the PV module is protected. Also, a blocking diode
is connected at the end of each series branch of the PV array to pre-



Fig. 6. Solar PV system with MPPT controller [7].

Fig. 7. General P&O MPPT algorithm flowchart [15].
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vent the reverse current, which is created by the unbalanced volt-
age levels between the parallel branches.

Under PSC, bypass diodes lead to a stepped decrease in output I-
V curve, and therewith, multiple local maxima and one global max-
imum power point (GMPP) occur in the output P-V curve of the PV
array. Without bypass diodes, these local maxima are not created,
and only a single MPP occurs at a level lower than the preceding
case [7,14]. In actual applications, only one bypass diode may be
added across to a group of PV cells connected in series based on
economic reasons. However, in this case, the maximum achievable
output power decreases under PSC in comparison to the case that
bypass diodes are used for each PV cell. In Fig. 4 and Fig. 5, Solar PV
arrays that operate under uniform and different PS patterns, and
corresponding output I-V and P-V characteristics for these PV
arrays are presented respectively.

2.3. Maximum power point tracking in photovoltaic systems

For obtaining the power with the maximum overall efficiency
from a PV system, its operating point must be adjusted as matching
the maximum power point (MPP) on its I-V characteristic curve.
The overall efficiency for a Solar PV system g is defined as the ratio
of average output power PPV ;avg to maximum achievable power
PPV ;max as shown in ð7Þ[11].

g ¼ 100 PPV ;avg
PPV ;max

% ð7Þ

The operating point of a Solar PV system is determined by the
intersection point of the I-V characteristic curve of the Solar PV
system and the I-V characteristic line of a load which is connected
to the PV system. I-V characteristic curve of the PV system depends
Table 1
P&O general decision process.

DVn DPPV;n Vout;n

DVn > 0 DPPV ;n > 0 Increase by DVnþ1j j
DVn > 0 DPPV ;n < 0 Decrease by DVnþ1j j
DVn < 0 DPPV ;n > 0 Decrease by DVnþ1j j
DVn < 0 DPPV ;n < 0 Increase by DVnþ1j j

5

on atmospheric conditions such as Solar irradiance and tempera-
ture, and the slope of a load line changes inversely proportional
to the load resistance. Thus, the operating point of the PV system
may be shifted with respect to the changes in the slope of load line
or atmospheric conditions. Therefore, MPP may be coupled with
the operating point of the PV system by changing either load resis-
tance or atmospheric conditions.

Since changing the atmospheric conditions or the load con-
nected to the PV system is not solely viable for real case applica-
tions, compulsorily, a DC-DC power converter is used to link the
load to the PV module. This converter enables to change the load
resistance, which is seen on the PV module side, and consequently



Table 2
Literature review on P&O MPPT algorithm.

Author(s) Year Method Control
Variable

Converter/
Processor

Application/Test(s) Notes and Results

Abdelsalam et al. [17] 2011 Adaptive PI controlled
P&O

Duty
cycle

Boost
converter/
DSP

Standalone system/
Prototype

Minimized SS errors via adapting step
sizes by a proportional-integral (PI)
controller.

Elgendy et al. [18] 2012 P&O with fixed step-
size

Voltage,
Duty
cycle

Buck
converter/
DSP

Standalone system/
Simulation, Water supply
system

Duty cycle control worked more stable
than voltage control. Obtained 97.9% SS
efficiency under rapidly changing
irradiance levels.

Ishaque et al. [19] 2014 P&O with fixed step-
size

Duty
cycle

Buck-boost
converter/
DSP

Standalone system/
Prototype

Compared with InC algorithm. InC
performed slightly better than P&O with
98.5% to 98.3% SS efficiencies. They fell
below 95% under lower irradiation levels.

Mohd Zainuri et al. [20] 2014 Adaptive P&O with FLC Duty
cycle

Boost
converter/
DSP

Standalone system/
Simulation, Prototype

Obtained significantly higher efficiencies
than sole P&O and FLC, particularly, under
low irradiation levels. Traditional P&O
efficiency increased by 5%.

Kollimalla and Mishra [21] 2014 Adaptive P&O Current Boost
converter/
Computer

Standalone system/
Hardware simulation

Chosen step-size based on estimated
initial MPP via short-circuit current.
Performed faster than traditional P&O.

Killi and Samanta [22] 2015 Drift-free P&O Duty
cycle

Single-ended
primary-
inductance
converter
(SEPIC)/lCU

Standalone system/
Simulation, Prototype

Utilized PV current changes to avoid drift
issues in traditional P&O due to false
decisions under rapid irradiance changes.
Overall efficiency increased.

Ahmed and Salam [23–25] 2015,
2016,
2018

Adaptive P&O Duty
cycle

Buck-boost
converter/
DSP

Standalone system/
Simulation, Prototype

Shortened step-sizes around MPP
according to thresholds based on P-V
slope. Reached 99% SS efficiency under
fast irradiance changes, 12% higher than
traditional P&O.

Alik and Jusoh [26] 2017 Modified P&O with
checking algorithm

Duty
cycle

Boost
converter

Standalone system/
Simulation

Compared all MPPs to identify the GMPP.
Adapted step-sizes by a constant scaling
factor. Able to perform under PSC.

Ali et al. [27] 2018 Modified P&O with
variable step-size

Duty
cycle

Boost
converter,
Inverter

Grid-connected system/
Simulation

Divided the P-V curve into 4 operating
regions to adjust step-sizes in MPP
adjacencies. SS efficiency increased from
92.6% to 95.4%. Provided a grid
connection scheme.

Abdel-Salam et al. [28] 2018 Modified P&O Duty
cycle

Boost
converter

Standalone system/
Simulation

Used calculated changes in voltage,
current and power together. Obtained
99.48% and 98.03 SS efficiencies under
constant and dynamical conditions.

Kamran et al. [29] 2018 Modified P&O Duty
cycle

Boost
converter/
lCU

Standalone system/
Simulation, Prototype

An initial search was used to narrow the
MPP search region. Tracking speed and
overall performance was increased.

Raiker et al. [30] 2021 Momentum-based P&O Current Boost
converter/
lCU

Standalone system/
Simulation, Prototype

Employed a momentum term for adaptive
step-sizes. With current control, tracking
speed was doubled and oscillations
decreased by 30%.

Ali and Mohamed [31] 2022 Modified P&O with
open-circuit voltage

Duty
cycle

Boost
converter,
Inverter

Grid-connected system/
Simulation

Added open-circuit voltage estimations
based on measured temperature and STC
to [27]. Obtained 99.7% SS tracking effi-
ciency for a 10-hour irradiance profile.
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to adjust the operating point of the PV system as it matches with
the MPP [4]. Load resistance, which is seen on the PV module side,
can be altered via DC-DC power converter by changing its duty
cycle. Since MPP may shift dynamically, tracking of MPP requires
dynamic duty cycle alteration. This issue brings out the necessity
of maximum power point tracking algorithms. A Solar PV system
with an MPPT controller is illustrated in Fig. 6.

MPPT algorithms may be classified under two main groups as
conventional methods and modern methods. Conventional meth-
ods refer to simplistic MPPT algorithms, which have been widely
used from the beginning, such as Perturb-and-Observe (P&O) and
Incremental Conductance (InC), in particular, and also Hill Climb-
ing (HC), Fractional Open-Circuit Voltage (FOV), and Fractional
Short-Circuit Current (FSC). Modern methods encompass various
progressive MPPT control and optimization algorithms and
approaches, including Fuzzy Logic Control (FLC), Automatic Control
System (ACS), Artificial Neural Network (ANN), Genetic Algorithm
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(GA), and Swarm Intelligence (SI) methods including Ant Colony
Optimization (ACO), Particle Swarm Optimization (PSO), Artificial
Bee Colony (ABC), Firefly Algorithm (FA), and many other recently
developed metaheuristic algorithms. Conventional and modern
MPPT methods will be reviewed in Section 3 and Section 4 in order.
In Section 5, the overall assessment of these methods will be
provided.

3. Conventional maximum power point tracking methods

Conventional MPPT methods, which are simplistic algorithms
mainly based on perturbative techniques, have been widely used
in Solar PV applications and improved through the last two dec-
ades. In this sense, conventional methods are well-studied and
well-known MPPT algorithms. In this section, conventional MPPT
algorithms will be reviewed. Detailed reviews of P&O and InC algo-
rithms, which are the most commonly used conventional methods,



Table 3
InC general decision process.

Condition1 Condition2 Vout;n

DVn–0 GPV ;n þ DGPV ;n > 0 Increase by DVnþ1j j
GPV ;n þ DGPV ;n < 0 Decrease by DVnþ1j j
GPV ;n þ DGPV ;n ¼ 0 No Change

DVn ¼ 0 DIPV ;n > 0 Increase by DVnþ1j j
DIPV ;n < 0 Decrease by DVnþ1j j
DIPV ;n ¼ 0 No Change

Fig. 8. General InC MPPT algorithm flowchart [15].
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will be given in Section 3.1 and Section 3.2 in order. Also, HC algo-
rithm, and FOV and FSC methods will be briefed in Section 3.3 and
Section 3.4, respectively.
3.1. Perturb-and-Observe algorithm

Perturb-and-Observe method is the most common MPPT algo-
rithm. In P&O MPPT algorithm, a perturbation is applied on the
PV system output voltage at the load side of the DC-DC converter,
and the instantaneous output power of the PV array is calculated
by multiplying the measured current and voltage values of the
PV array. Then, P&O algorithm identifies the direction of the next
perturbation step with respect to the perturbation in the PV sys-
tem output voltage and the change in PV array output power to
track MPP. Table 1 briefs the general decision process of P&O MPPT
algorithm where DVn is the applied perturbation which has either
fixed or variable step-size, DPPVn is the change in PV array power,
and Vout;n is the PV system output voltage.

The output power of the PV array either increases or decreases
based on the output voltage perturbation. Thereby, P&O algorithm
continuously tracks the MPP via the output voltage perturbations;
thus, the operating point of the PV array oscillates around the adja-
cency of MPP in the steady-state (SS) [16]. The mathematical
expression for P&O MPPT algorithm is provided in 8ð Þ. Also, the
general P&O MPPT algorithm flowchart is shown in Fig. 7.

Vout;nþ1 ¼ Vout;n þ sgn DPPV ;nð Þ DVnþ1j j ð8Þ
P&O MPPT method shows two major variations with respect to

the perturbation step-size as fixed and variable. In P&O algorithm
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with fixed step-size, the same perturbation size is applied during
all tracking process. Smaller step-size decreases the SS error but
slows down the tracking speed. Larger step-size increases the
tracking speed; however, it also increases the SS oscillations.
Therefore, to handle the drawbacks of fixed step-size P&O algo-
rithm, several adaptive or modified P&O variations with variable
step-size, which mostly utilize the diminishing perturbations
around the MPP, had been developed. Table 2 presents a chrono-
logical literature review on P&O MPPT algorithm, including its
modified variations.

3.2. Incremental conductance algorithm

Incremental Conductance is another common classical pertur-
bative MPPT algorithm. Similar to P&O MPPT algorithm, in InC
MPPT algorithm, a perturbation is applied on the PV system volt-
age at the DC-DC converter output; instantaneous current and
voltage values of the PV array are measured, and changes in these
values are calculated. Then, instantaneous conductance of the PV
array and change in the conductance are calculated based on the
measured current to the voltage of the PV array and calculated
changes in them. Since the derivative of PV array output power
is directly related to instantaneous conductance and its derivative,
decisions for the direction of next perturbation are made based on
the comparison of instantaneous conductance and its derivative
[7]. The decision process is repeated to approach the MPP. InC
MPPT algorithm identifies the MPP where the derivative of PV
array output power, and accordingly the sum of instantaneous con-
ductance of PV array GPV with change in the conductance dGPV are
zero as per 9ð Þ and 10ð Þ [15].
dPPV
dVPV

¼ d VPV IPVð Þ
dVPV

¼ IPV þ VPV
dIPV
dVPV

¼ 0 ð9Þ

IPV
VPV

þ dIPV
dVPV

¼ GPV þ dGPV ¼ 0 ð10Þ
Since obtaining the equality condition in 10ð Þ is almost impos-

sible for the real cases, instead of exact zero, an interval around
zero with a small deviation e, ð0� e;0þ eÞ, may be used to specify
the adjacency of MPP. With this manipulation, a further increase in
SS operation performance of InC MPPT algorithm can be achieved.
Also, adaptive implementations with variable perturbation step-
size can be utilized in InC MPPT method. InC algorithm also can
detect the changes in current during the SS operation by compar-
ing calculated changes in output current and voltage values of PV
array. Thus, InC algorithm can eliminate the oscillations which
occur due to changes in environmental conditions or noises in SS
operation. This brings a significant advantage in comparison to
the traditional P&O algorithm. The general decision process of
InC MPPT algorithm is given in Table 3 where DIPVn and DGPVn are
the changes in current and conductance of PV array, respectively.
Equation ð11Þ provides the mathematical representation for the
InC MPPT algorithm. Also, a flowchart for the general InC MPPT
algorithm is shown in Fig. 8. Related works on InC MPPT algorithm
and its variations are given in Table 4 in chronological order.

Vout;nþ1 ¼ Vout;n þ sgn DIPV ;nð Þ DVnþ1j j; if DVn ¼ 0
Vout;n þ sgn GPV ;n þ DGPV ;nð Þ DVnþ1j j; otherwise

�
ð11Þ
3.3. Hill climbing algorithm

Hill climbing is another common classical MPPT method which
is actually a popular variant of P&O. Both algorithms utilize exactly
the same perturbative approach, and even sometimes, HC and P&O
terms are used interchangeably. As distinct from P&O, in HC algo-
rithm, perturbations are directly applied on the duty cycle which
controls the on–off ratio of the DC-DC converter instead of PV sys-



Table 4
Literature review on InC MPPT algorithm.

Author(s) Year Method Control
Variable

Converter/Processor Application/Test(s) Notes and Results

Safari and
Mekhilef
[32]

2011 InC with fixed step-size Duty cycle Ćuk converter/DSP Standalone system/Simulation,
Prototype

Used a simplified, low-cost circuit design via direct control method. Stated
that obtained acceptable responses, but efficiency was not specified.

Mei et al. [33] 2011 Modified InC with variable step-
size

Duty cycle Boost converter/lCU Standalone system/Simulation,
Prototype

Varied step-sizes according to the slope of the PV output power and duty
cycle characteristic curve. Provided faster response and less SS error than
traditional InC.

Sera et al. [34] 2013 InC and P&O with fixed step-sizes Voltage Boost converter,
Inverter

Grid-connected system/Simulation Mathematically analyzed indifference of InC and P&O. Experimentally
revealed that there is no statistically significant difference between them.
Reached 99% and 95–98% SS efficiencies under constant and changing
conditions.

Tey and
Mekhilef
[35]

2014 Modified InC Duty cycle SEPIC/lCU Standalone system/Simulation,
Prototype

Used small intervals instead of a single point for MPP. Outperformed
traditional InC in terms of SS oscillations and MPP accuracy.

Radjai et al.
[36]

2014 Modified InC with fuzzy logic
estimator

Duty cycle Ćuk converter/DSP Standalone system/Simulation,
Prototype

Changed duty cycles based on a fuzzy logic estimator. Reached 99.6% SS
efficiency. Able to perform under PSC and fast irradiance changes.

Sivakumar
et al. [37]

2015 Modified InC Voltage Buck-boost converter,
Inverter/DSP

Grid-connected system/Simulation,
Prototype

Utilized PV output currents calculated as a function of load impedance to
reduce oscillations due to ripples. Performed with better efficiency than
traditional InC.

Putri et al. [38] 2015 InC with fixed step-size Duty cycle Buck-boost converter Standalone system/Simulation Able to track MPP with higher efficiency and lower SS oscillations but
slower responses than P&O under changing conditions.

Loukriz et al.
[39]

2016 InC with variable step-size Duty cycle Buck-boost converter/
DSP

Standalone system/Simulation,
Prototype

Varied step-sizes based on the ratio of change in PV output power to the
difference of the changes of PV output voltage and current. Provided faster
responses, less oscillations, and higher SS efficiency than traditional InC
under fast irradiation changes.

Elgendy et al.
[40]

2016 InC with fixed step-size Voltage,
Duty cycle

Buck converter/DSP Standalone system/Simulation, Water
pump system simulation

Examined frequency selection method similarly to [18]. Sped up conver-
gence and increase efficiency with high frequency perturbation and duty
cycle control. Obtained 97.4% and 98.8% SS efficiencies under slowly and
rapidly changing irradiances.

Zakzouk et al.
[41]

2016 Low-cost InC with variable step-
size

Duty cycle Boost converter/lCU Standalone system/Simulation,
Prototype

Exchanged the divisions used for InC algorithm with multiplications and a
few additional comparisons. Able to implement in low-cost lCU via
reducing required process power. Reached 99.7% and 94.3% SS efficiencies
under uniform irradiance and PS.

Kumar et al.
[42]

2018 Self-adaptive InC Duty cycle Boost converter/CPU Standalone system/Simulation,
Prototype

Adapted step-sizes by estimating MPP region based on PV output power
and voltage comparison over moving 3 consecutive points. Rose speed and
SS efficiency.

Shahid et al.
[43]

2018 Temperature controller and InC Duty cycle Boost converter/lCU Standalone system/Prototype Used PV cell temperature as an extra input. Adjusted the Fresnel lens angle
to optimize PV cell operating temperature and increase maximum
achievable power.

Motahhir et al.
[44]

2018 Modified InC with variable step-
size

Duty cycle Boost converter Standalone system/Simulation Detected sudden irradiance changes based on the ratio of changes in PV
output power to output voltage while allowing small oscillations around
MPP. Obtained 98.8% SS efficiency under fast changing irradiance levels.

Necaibia et al.
[45]

2019 Modified InC Duty cycle SEPIC/lCU Standalone system/Simulation,
Prototype

Adapted step-sizes based on the region in or out MPP adjacency.
Implemented in low-cost lCU. Reduced SS oscillations and sped up
convergence in dynamic conditions.

Mishra et al.
[46]

2021 Modified InC with adaptive step-
size and frequency

Duty cycle Boost converter/lCU Standalone system/Simulation,
Prototype

Adapted step-sizes according to change in output voltage and iteration
frequencies based on step-size. Significantly reduced SS oscillations via
simple low-cost modifications.

Ahmed et al.
[47]

2022 InC with ANFIS Duty cycle Boost converter Grid-connected system/Simulation Used Adaptive Neuro-Fuzzy Inference System (ANFIS) trained via crow and
pattern search. Utilized temperature and irradiance data. Outperformed
conventional and fuzzy methods with 99% tracking efficiency. Required
complex and high-cost modifications.
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Table 5
Literature review on HC MPPT algorithm.

Author(s) Year Method Control
Variable

Converter/
Processor

Application/Test(s) Notes and Results

Lohmeier
et al. [55]

2011 Current-
sensorless HC

Duty
cycle

Double-boost
converter/
Computer

Standalone system/
Simulation, Prototype

Estimated PV output current based on voltage ripples measured on the
converter input. Tested under real weather conditions. Performed with
86%-91% tracking efficiencies.

Kjær [56] 2012 HC and InC
with fixed
step-sizes

Duty
cycle

Boost
converter,
Inverter/
Computer

Grid-connected
system/Hardware
simulation

Compared with InC on a grid-connected hardware under 27 real
irradiation profiles over a year. Revealed that there is no statistically
significant difference at 95% confidence level. Obtained 99.8% SS
efficiencies for both algorithms.

Abuzed et al.
[53]

2014 Modified HC
with variable
step-size

Duty
cycle

Boost
converter/
Computer

Standalone system/
Simulation, Hardware
simulation

Adapted step-sizes according to changes in PV output power. Reached
99.4% and 98.8% SS efficiencies under constant and dynamic conditions.

Lasheen and
Abdel-
Salam
[54]

2018 Hybrid HC
with ANFIS
controller

Duty
cycle

Boost
converter

Standalone system/
Simulation

Estimated reference duty cycle ratio for MPP by ANFIS controller. Used
irradiation, temperature, and PV output current and voltage measures.
Responded fast and accurate with higher SS efficiency under both rapid
and nonlinear irradiation changes.

Bouakkaz
et al. [57]

2020 Modified HC
with FLC

Duty
cycle

Boost
converter

Standalone system/
Simulation

Utilized a FLC to adapt step-sizes based on measured PV output voltage
and current. Provided stable output under sudden irradiance and
temperature changes.

Table 6
Literature review on FOV and FSC MPPT methods.

Author(s) Year Method Control
Variable

Converter/
Processor

Application/Test(s) Notes and Results

Ahmad
[58]

2010 FOV Voltage Buck
converter/No
processor is
required

Standalone system/
Prototype

Decreased power losses due to load disconnection during
measurements via using short sampling time and period with a
timer. Needed no processor. Lowered cost.

Sher et al.
[59,60]

2015,
2018

Hybrid FSC
with P&O

Duty
cycle

Buck-boost
converter,
Inverter/DSP

Standalone system, Grid-
connected system/
Simulation, Hardware
simulation

Estimated PV output current for MPP via FSC. Used P&O to fine-
tune for actual MPP. Obtained 97.6% and 95.7% SS efficiencies for
standalone system and 96.3% and 95.8% efficiencies for grid-
connected systems under constant and dynamic conditions.

Hua et al.
[61]

2016 Hybrid
current-
sensorless
modified FOV

Duty
cycle

Boost
converter/DSP

Standalone system/
Simulation, Prototype

Set thresholds for the MPP region via FOV. Applied fine-tuning
by InC-like method. Adapted step-sizes based on PV output
voltage and duty cycle and changes in them. Reached 99.7% SS
efficiency.

Bounechba
et al.
[62]

2016 FSC with
current
perturbation

Current Boost
converter/DSP

Standalone system/
Simulation, Hardware
simulation

Derived short-circuit currents based on the measured irradiation
levels instead of disconnecting PV array. Obtained faster
response and less SS oscillations than P&O.

Hmidet
et al.
[63]

2021 Improved FOV Duty
cycle

Boost
converter,
Inverter/DSP

Standalone system/Water
pump system

Adjusted duty cycle according to comparison of PV voltage and
estimated MPP voltage based on measured temperature.
Increased tracking speed, accuracy, and efficiency.
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tem output voltage [48,49]. As analogous to P&O, in HC algorithm,
a perturbation is applied on the duty cycle of the converter, and
instantaneous output power of the PV array is calculated as the
multiplication of measured instantaneous current and voltage val-
ues of the PV array. Then, the direction of the next perturbation
step is identified based on the perturbation in the duty cycle and
the change in PV array output power.

HC algorithm follows the same decision process with P&O algo-
rithm. If the applied perturbation and the change in the output
power of the PV module are in the same direction, then an incre-
ment will be applied to the duty cycle. If they are in opposite direc-
tions, then the duty cycle will be reduced [50]. The general HC
MPPT algorithm can be represented by 12ð Þ where DPV ;n denotes
the duty cycle of the converter and DDn is the fixed or variable per-
turbation step-size which is applied on duty cycle.

DPV ;nþ1 ¼ DPV ;n þ sgn DPPV ;nð Þ DDnþ1j j ð12Þ
The main advantage of HC MPPT algorithm is the simplified

control via directly applied PWM signal on the converter. The dis-
advantages of HC method are the same with P&O and InC algo-
rithms. The main drawback of HC algorithm is the SS oscillations
which decrease the efficiency during the operation in the adja-
cency of MPP [51]. For solving this issue, a modified HC algorithm
with variable step-size can be employed [52]–[54]. A brief litera-
ture review on HC MPPT algorithm is provided in Table 5.
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3.4. Fractional Open-Circuit voltage and Short-Circuit current methods

Fractional open-circuit voltage is a simple method that directly
sets the operating voltage to a certain fraction of the open-circuit
voltage of the PV system. In FOV method, first, the load is discon-
nected, and the instantaneous open-circuit voltage of the PV sys-
tem is recorded. Then, measured open-circuit voltage is scaled by
optimal proportionality constant and assigned as the operating
voltage of the PV system. This procedure is periodically repeated
during the operation. FOV method can be applied as given in
13ð Þ where VPV is PV output voltage which corresponds to the esti-
mated MPP, KOC is the optimal proportionality constant for the
open-circuit coefficient, and VOC denotes the open-circuit voltage
of the PV system. In general, KOC is selected between 0.71 and
0.78 [48].

VPV ;MPP ¼ KOCVOC ð13Þ
Fractional short-circuit current method is another simple

method which analogous to FOV method. In FSC method, first,
the load is shorted, and the instantaneous short-circuit current of
the PV system is recorded. Then, measured short-circuit voltage
is scaled by optimal proportionality constant and assigned as the
operating current of the PV system. This procedure is periodically
repeated during the operation. FSC method can be applied as per
14ð Þ where IPV ;MPP is PV output current which corresponds to the
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estimated MPP, KSC is the optimal proportionality coefficient for
the short-circuit current, and ISC denotes the short-circuit current
of the PV system. Typical values of KSC vary between 0.78 and
0.92 [48].

IPV ;MPP ¼ KSCISC ð14Þ
FOV and FSC methods are mainly employed for their simplicity.

Also, FOV only requires a voltage sensor, and FSC only requires a
current sensor as well. Thereby, FOV and FSC methods provide a
simple and economical way to control a Solar PV system. Besides
their advantages, FOV and FSC methods bring a variety of disad-
vantages. The main disadvantage of these methods stems from
interruptions of power transfer due to periodical shorting or open-
ing the circuit during the sensing actions. Additionally, none of
these methods can provide high accuracy MPP tracking. Accuracies
get worse under PS and fast changing environmental conditions.
All these disadvantages cost to power losses. Therefore, in this
manner, FOV and FSC methods can be regarded as an inefficient
way to control a PV system. Some of the related works on FOV
and FSC MPPT methods are provided in Table 6.

4. Modern maximum power point tracking methods

Modern MPPT methods have been needed to overcome some
specific issues about MPP tracking, such as operating under the
PS or fast changing irradiance conditions where conventional
MPPT methods were not sufficient. Modern MPPT methods actu-
ally refer to some Artificial Intelligence (AI) algorithms, and Auto-
matic Control System approaches that are adapted and utilized for
MPPT. MPPT algorithms based on Fuzzy Logic Control, Automatic
Control System, and Artificial Neural Network methods will be
given in Section 4.1, Section 4.2, and Section 4.3, respectively. Also,
Genetic Algorithm for MPPT will be provided in Section 4.4. Finally,
in Section 4.5, MPPT methods, which utilize various Swarm Intelli-
gence algorithms, will be covered.

4.1. Fuzzy logic control

Fuzzy Logic Control is an AI control algorithm based on some ‘‘if
statements” that enable constructing nonlinear models. In general,
FLC can be preferred due to its robust performance in handling
Fig. 9. Membership functions for FLC.

Table 7
Inference rules for FLC.

en Den
LN SN

LN LN LN
SN LN SN
Z LN SN
SP LN Z
LP Z SP
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uncertain or unexpected situations by means of its fuzzy modeling
instead of exact mathematical expressions [64]. However, FLC
algorithm comes with the complexity in the construction of fuzzy
membership functions and inference rules based on these func-
tions truly.

FLC algorithm consists of three main stages which are fuzzifica-
tion, inference rules, and defuzzification. In the fuzzification stage,
inputs of the FLC are converted into categorical inputs according to
their belongingness to fuzzy membership functions. In the infer-
ence rules stage, FLC matches the fuzzified inputs with the corre-
sponding quantized control action based on the prespecified if
statements. In the defuzzification stage, the fuzzy control output
variable is generated based on the final membership, which calcu-
lated by combining all memberships, and this output is converted
back into the numerical control output [65]. In general, an FLC-
based MPPT algorithm uses an error value en and change in the
error Den as input variables which may be defined as given in
15ð Þ and 16ð Þ. The output of FLC is usually selected as the duty
cycle ratio Dn or change in duty cycle ratio DDn for MPPT
applications.

en ¼ DPPV ;n
DVPV ;n

ð15Þ

Den ¼ en � en�1 ð16Þ
Both membership functions and inference rules can be defined

by the FLC designers depending on either their knowledge or
empirical results. An example of typical five different membership
functions of which two are right-angled trapezoids in two tails and
three are triangles in the middle can be seen in Fig. 9, where LN is
large negative, SN is small negative, Z is zero, SP is small positive,
and LP is large positive.

Table 7 presents an example of FLC inference rules which are
based on membership functions shown in Fig. 9. For instance, if
the operating point of the PV system is in the left adjacency of
MPP, en becomes SN and if Den is Z; then, output DDn will be SN
according to rules given in Table 7.

FLC-based MPPT algorithms are rarely used alone. They are
highly appropriate for hybridization with other control, search,
and optimization techniques which include both conventional
and modern MPPT methods. In particular, neuro-fuzzy controllers,
which employ an embedded ANN algorithm in FLC system to opti-
mize membership function parameters adaptively, can be used for
effective MPP tracking under dynamic conditions. Since ANN can
also provide auto-tuning for inference rules, a neuro-fuzzy con-
troller does not require the designer’s knowledge. In Table 8, a
chronological literature review on FLC-based MPPT algorithms
and its hybridized variations is given.

4.2. Automatic control system approaches

Automatic Control Systems basically refer to closed-loop feed-
back control systems which consist of a plant/actuator, a con-
troller, a sensor, and a comparator/regulator. ACS is used to
match the output of a system with the applied reference input.
Automatic control approaches may be applied to systems that
Z SP LP

LN SN Z
SN Z SP
Z SP LP
SP LP LP
LP LP LP



Table 8
Literature review on FLC-based MPPT algorithms.

Author(s) Year Method Control
Variable

Converter/
Processor

Application/Test(s) Notes and Results

Alajmi et al. [66] 2011 FLC-based
modified
HC

Duty
cycle

Boost
converter/
DSP

Standalone system/
Simulation,
Prototype

Varied step-sizes via FLC for HC. Provided faster MPP convergence
and less SS oscillations than traditional HC.

Adly et al. [67] 2011 FLC with
FOV

Duty
cycle

Boost
converter

Standalone system/
Simulation

Employed FOV to estimate MPP. Reduced the MPP convergence time
by 20% in comparison to sole FLC.

Nabulsi et al. [68] 2012 FLC-based
modified
P&O

Duty
cycle

Buck
converter/
DSP

Standalone system/
Simulation,
Prototype

Changed step-sizes by FLC. Tested for 1 h under real weather
conditions. Sped up convergence and reduced SS oscillations in
comparison to traditional P&O.

Chen et al. [69] 2016 FLC-based
adaptive
InC

Duty
cycle

Boost
converter/
DSP

Standalone system/
Simulation,
Prototype

Adapted step-sizes by FLC according to slope of P-V curve of PV array.
Outperformed fixed step-size InC, adaptive InC, and FLC-based
modified HC with 98% SS efficiency.

Al-Majidi et al. [70] 2018 FLC-based
modified
P&O

Duty
cycle

Boost
converter,
Inverter

Grid-connected
system/Simulation

Adjusted step-sizes via FLC for P&O based on the ratios of change in
PV output power to output power and to change in output voltage.
Reached 99.6% overall efficiency and outperformed sole FLC and P&O.

Hong et al. [71] 2018 PSO-tuned
FLC

Duty
cycle

Boost
converter/
DSP

Standalone system/
Simulation,
Prototype

Designed FLC based on a procedure following Taguchi method. Tuned
FLC parameters by PSO. Outperformed InC with 96.25% overall
efficiency.

Bahrami et al. [72] 2019 Modified
FLC

Duty
cycle

Boost
converter/
DSP

Standalone system/
Simulation,
Hardware simulation

Varied step-sizes via FLC estimating MPP region based on PV output
power and voltage comparison over moving 3 consecutive points.
Employed P&O to reach actual MPP. Outperformed sole P&O and FLC
with faster convergence and higher SS efficiency.

Kececioglu et al. [73] 2020 Hybrid
modified
FLC with
InC

Duty
cycle

Boost
converter/
DSP

Standalone system/
Simulation,
Prototype

Modified FLC by using type-2 fuzzy gaussian membership set and
hybridizing with angle InC. Outperformed sole InC with 93.3% SS
efficiency and 99.8% accuracy.

Bisht and Sikander [74] 2022 Improved
FLC

Duty
cycle

Boost
converter

Standalone system/
Simulation

Used changes in PV input voltage and output power and previously
recorded responses for various temperature and irradiance levels as
inputs for FLC. Reached 96% accuracy.
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are linear or nonlinear. ACS approaches are widely utilized in
almost every control action and in MPPT control as well. MPPT
methods which are based on the most common ACS approach,
Proportional-Integral-Derivative (PID) control, and on a nonlinear
ACS approach, Sliding-mode Control (SMC), will be presented in
Section 4.2.1 and Section 4.2.2 in order.
4.2.1. Proportional-Integral-Derivative control
Proportional(P)-Integral(I)-Derivative(D) control is the most

common control method since 1950 s [75]. A generic PID controller
tracks a reference input by generating a control signal as a
weighted linear combination of three terms that are proportional
to the instantaneous error, the cumulative sum of the errors, and
changes in the error, where the error en denotes the difference
between the reference input yref ;n and the actual output yn of the
control system. PID control also has variations such as P, I, PI, PD,
or fractional-order PID (FOPID) that include I and D terms with
fractional exponents. The most important part of the PID controller
design is selection of parameters KP , KI and KD which are coeffi-
cients of P, I and D terms respectively. These parameters can be
tuned by using some systematic predetermined rules which are
developed based on experiments such as well-known Ziegler-
Nichols method [76]. Also, various optimization techniques can
be employed for more accurate PID tuning performance [77]. Gen-
eric approximate discrete PID controller output cn can be repre-
sented as per 17ð Þ, where DT is the period between two
consecutive measurements.
cn ¼ KPen þ KI
Pn

l¼1elDT þ KD
en�en�1

DT ð17Þ
PID and PI controllers are also utilized as MPPT controllers since

it provides more stable SS operation in comparison to classical
methods although its initial response speed is relatively low. For
MPPT control, the rate of change in PV output power with respect
to the PV output voltage is defined as control system output. The
reference input of the control system is chosen as zero to reach
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the MPP, where the slope of the P-V characteristic of the PV mod-
ule is zero. Therefore, en and cn can be defined as per 18ð Þ
and ð19Þ.

en ¼ yref ;n � yn ¼ 0� DPPV ;n
DVPV ;n

¼ �IPV ;n � VPV ;n
DIPV ;n
DVPV ;n

ð18Þ

cn ¼ �KP
DPPV ;n
DVPV ;n

� KI
Pn

l¼1
DPPV ;l
DVPV ;l

DT � KD
DT

DPPV ;n
DVPV ;n

� DPPV ;n�1
DVPV ;n�1

� �
ð19Þ
4.2.2. Sliding-mode control
Sliding-mode Control is a robust nonlinear control algorithm

that is capable of handling nonlinear system models, changing
parameters, external disturbances, and uncertainties. SMC is
mostly employed to provide robust control under high uncertain-
ties. Therefore, SMC is appropriate to be used in applications where
the system model is imprecise [78]. SMC has two different modes
which are convergence-mode and sliding-mode. In convergence-
mode, the system state approaches a sliding surface with discon-
tinuous movements. In sliding-mode, the system state moves to
reference value through the sliding surface [79].

For a system defined by 20ð Þ and 21ð Þ where u is the control
input vector, y is the system output vector, x is the state vector,
e ¼ yref � y is the error between desired output reference and
actual output, and _x and _e are first derivatives of x and e; a sliding
surface r may be represented as per 22ð Þ.
_x ¼ Axþ Bu ð20Þ

y ¼ Cxþ Du ð21Þ

r ¼ f e; _e; � � � ; e mð Þ� � ¼ e mð Þ þ Pm�1

l¼0
ble lð Þ ð22Þ

In the first step, an appropriate sliding surface, which dimin-
ishes towards zero, is selected. In general, a sliding surface is rep-
resented by a parameter a and the derivative order m as shown in
23ð Þ. In the second step, the control input is selected, simply as
given in 24ð Þ where k is a positive real number.



Table 9
Literature review on ACS-based MPPT algorithms.

Author(s) Year Method Control
Variable

Converter/
Processor

Application/Test(s) Notes and Results

Dounis et al.
[81]

2013 Adaptive FLC-
tuned PID

Duty
cycle

Buck
converter

Standalone system/
Simulation

Tuned PID via FLC adapted by using scaling factors generated by another FLC. Fed the slope of P-V curve back to
controller block. Outperformed traditional PID and P&O with 87.3–98.4% SS efficiencies under various conditions.

Levron and
Shmilovitz
[82]

2013 Dual loop with
SMC and P&O

Duty
cycle

Boost
converter/
DSP

Standalone system/
Hardware simulation

Combined SMC and P&O in dual loop. Generated reference input for SMC by P&O. Defined sliding surface based on
input current and voltage of converter and reference. Able to perform under PSC. Reached 93% SS efficiency under
changing irradiation.

Bianconi et al.
[83]

2013 Current-based
P&O with SMC

Duty
cycle

Boost
converter/
lCU

Grid-connected system/
Simulation, Prototype

Generated reference input for SMC via current-based P&O. Defined sliding surface based on the current sensed through
input capacitor of converter, inductor current, and PV output current. Able to perform under fast changing irradiance
and PSC.

Mamarelis
et al. [84]

2014 P&O-based SMC Voltage SEPIC/DSP Standalone system/
Simulation, Prototype

Generated reference input for SMC by P&O. Theoretically analyzed SEPIC topology and dynamic behavior and stability
of system. Verified experimentally.

Kumar et al.
[85]

2015 InC-based PID Duty
cycle

Boost
converter

Standalone system/
Simulation

Provided reference input based on the difference of the slope of the P-V curve and InC expression given by 9ð Þ and 10ð Þ.
Tuned PID via Ziegler-Nichols method. Outperformed P&O and InC. with faster response and 97.4% SS efficiency.

Harrag and
Messalti
[86]

2015 GA-tuned PID-
controlled P&O

Duty
cycle

Boost
converter

Standalone system/
Simulation

Varied step-sizes by offline GA-tuned PID. Defined error term as difference of PV array and converter output powers.
Used P&O to search MPP. Reached 96.7% SS efficiency.

Belkaid et al.
[87]

2016 SMC Duty
cycle

Boost
converter/
DSP

Standalone system/
Simulation, Hardware
simulation

Selected sliding surface as per 26ð Þ. Utilized converter output voltage as input. Used a smaller step-size in MPP
adjacency. Outperformed P&O and InC with, faster and more accurate responses and less SS oscillations.

Montoya et al.
[88]

2016 P&O-based SMC Duty
cycle

Boost
converter/
DSP

Grid-connected system/
Simulation, Prototype

Defined a sliding surface based on current sensed through converter input capacitor, PV output voltage, and reference
voltage provided by P&O. Showed effective MPP tracking and robust performance under disturbance.

Pradhan and
Subudhi
[89]

2016 FOV-based double
integral SMC

Duty
cycle

Boost
converter/
FPGA

Standalone system/
Simulation, Prototype

Combined double-integral controller with SMC. Defined controller error as difference between reference voltage
obtained by FOV and PV output voltage. Selected sliding surface as sum, integral, and double integral of the error.
Outperformed P&O, adaptive P&O, SMC, and integral SMC with 99.3% SS efficiency.

Yang et al.
[90]

2018 P&O-based FOPID Duty
cycle

Inverter/
DSP

Grid-connected system/
Hardware simulation

Tuned P&O-based FOPID by simple yin-yang-pair optimizer. Fed inverter output current back to controller. Able to find
GMPP under PSC. Outperformed PID, FLC, FOPID, and SMC in response time, overshoot, and SS error.

Al-Dhaifallah
et al. [91]

2018 InC-based
fractional-order I
control

Duty
cycle

Boost
converter

Standalone system/
Simulation

Defined controller error as per 9ð Þ and 10ð Þ. Tuned fractional-order I by PSO based radial movement optimizer. Tracked
MPP accurately and sped-up InC by 41.7%.

Nasir et al.
[92]

2021 Adaptive FOPID
with PSO

Voltage,
Current

Inverter Grid-connected system/
Simulation

Tuned FOPID online via PSO when an error occurred. Reduced total harmonic distortion ratio by 1.9%. Outperformed
FOPID, FLC, PI, ACO-based FOPID, and GA-based FOPID with faster convergence and lower overshoot.

Inomoto et al.
[93]

2022 Cascade SMC Current,
Duty
cycle

Boost
converter/
DSP

Standalone system/
Simulation, Hardware
simulation

Cascaded voltage and current control loops. Used voltage loop to give reference for current loop. Performed slightly
better than SMC-PI, and 2-pole 2-zero controllers in settling time under changing irradiance.
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r ¼ d
dt þ a
� �m

e ð23Þ
Fig. 10. Typical three-layer ANN-based MPPT structure.
u ¼ ksgn rð Þ ¼ k; for r > 0
�k; for r < 0

�
ð24Þ

In SMC, a common drawback called chattering problem is the
oscillations in zig-zag shape which occur in SS operation due to
discrete switching in control input. For solving this problem, the
transition of control input where the sliding surface is close to zero
can be smoothed by replacing signum function with a continuous
function such as sigmoid or tanh [80]. A smoother control input
can be defined as seen in 25ð Þ.

u ¼ k tanh rð Þ ¼ 2k
1þe�2r � 1 ð25Þ

For MPPT control, the sliding surface can be chosen as the rate
of change in output power of the PV array with respect to the
change in voltage. Thus, MPP is reached when the sliding surface
function becomes zero as per 26ð Þ. Therefore, control input can
be selected as the operating voltage of the PV and adjusted by
SMC as shown in 27ð Þ.

rn ¼ DPPV ;n
DVPV ;n

¼ IPV ;n þ VPV ;n
DIPV ;n
DVPV ;n

ð26Þ
Vout;nþ1 ¼ Vout;n þ DVj jtanh rnð Þ ð27Þ
A literature review on ACS-based MPPT algorithms is provided

in Table 9 in chronological order.
4.3. Artificial Neural Network

Artificial Neural Networks refer to an AI-based bio-inspired
probabilistic modeling technique which was first proposed based
on the organization in the human brain by F. Rosenblatt in 1958
[94]. ANN is mostly employed for modeling processes which have
complex and nonlinear structure via simply mimicking working
principle of the neurons in the human brain. Thus, ANN is able to
solve more complex problems by developing its knowledge, which
is learned in the training process, based on previous data. A typical
ANN structure consists of three different layers which are named
as input layer, hidden layer, and output layer [95]. In this sense,
an ANN can be considered as a hierarchical regression model.

In MPPT applications, ANN input variables can be selected as a
combination of irradiance level, temperature level, open-circuit
voltage, and short-circuit current of PV array. Then, in the hidden
layer, which may involve more than one layer, neurons convert
weighted input variables into proper outputs via an activation
function such as sigmoid or tanh. Finally, ANN provides an esti-
mated value for output voltage or output current of the PV array
or duty cycle value, where this estimated value corresponds to
GMPP. In indirect MPPT control applications, the estimated output
is used as a reference for a controller or a perturbative method. In
direct MPPT applications, estimated outputs are periodically gen-
erated and are applied to DC-DC converter directly. A typical
three-layer ANN structure for MPPT application is shown in Fig. 10.

Tuning of the ANN weights requires heavy training which is
another complex optimization problem. ANN weights are usually
optimized via a long learning process, which can last for days or
weeks, based on a feedback approach. Additionally, ANN needs dif-
ferent training for each PV cell model and array topology. However,
a well-trained ANN-based MPPTmodel can provide highly accurate
GMPP estimates. Further, using a higher number of neurons in the
hidden layer increases the accuracy of the estimates, whereas it
also increases computational time in the GMPPT process as a
trade-off. Some of the related studies on ANN-based MPPT algo-
rithms are reviewed in Table 10.
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4.4. Genetic algorithm

Genetic Algorithms refer to an AI-based bio-inspired evolution-
ary modeling technique that was developed based on J. H. Hol-
land’s studies in the 1960 s [104]. GA is mostly used as a
metaheuristic optimizer or a classifier by mimicking evolution
and natural selection processes that occur in the natural world.
GA has three mechanisms which consist of a selection process
based on the rule of survival of the fittest, and two reproduction
processes based on crossing over and mutation of the genes. First,
inputs are defined as the initial population which is represented by
chromosomes. Then, a selection is performed according to fitness
or objective function. After that, an intermediate population is cre-
ated by randomly combined genes which are generated via repro-
duction mechanisms. Selection and reproduction processes are
repeated until to reach the final population that corresponds to
the optimal solution.

GAs are rarely used as an MPPT technique alone, rather
employed in hybrid MPPT methods. The addition of GA increases
tracking response characteristics and decreases SS oscillations
under dynamic conditions. Also, GAs are able to find GMPP under
PSC. Due to these advantages, GAs are combined with FLC, ANN,
or conventional MPPT methods as well. However, implementation
complexity and processing requirements can be considered disad-
vantages of GA-based MPPT methods. A flowchart for the general
GA-based MPPT algorithm is presented in Fig. 11, and a literature
review for related works on GA-based MPPT algorithms are pro-
vided in Table 11.
4.5. Swarm intelligence algorithms

Swarm Intelligence refers to collective and collaborative behav-
ior of distributed and communicating multi-agent systems which
can be natural or artificial. SI algorithms are metaheuristic opti-
mizer methods which are inspired by behaviors of swarms of var-
ious species. These methods operate a collaborative search in a
bounded search space via the agents of the swarm. In general,
agents of the swarm follow simple rules during the search action.
They may operate local searches, interact with other agents, and
contribute to collective and collaborative behavior of the swarm.

SI algorithms can provide instantaneous solutions while contin-
uing to search action. Even though, as metaheuristic algorithms, SI
algorithms cannot guarantee the optimal solution, they usually
show fast convergence to a near-optimal solution if it is not the



Table 10
Literature review on ANN-based MPPT algorithms.

Author(s) Year Method Control
Variable

Converter/
Processor

Application/Test(s) Notes and Results

Rai et al. [96] 2011 ANN with
optimal
controller

Duty
cycle

Buck-boost
converter

Standalone system/
Simulation

Given irradiance, temperature, and wind speed as inputs to
estimate MPP voltage and current. Employed optimal controller
for MPP tracking. Outperformed PID.

Boumaaraf et al.
[97]

2015 FLC-tuned
ANN

Duty
cycle

Buck-boost
converter,
Inverter

Grid-connected
system/Simulation

Took irradiance, temperature, PV open-circuit voltage, and
short-circuit current as inputs, to estimate MPP. Implemented
with multi-level inverter. was provided. Able to track MPP
under varying irradiance and temperature.

Arulmurugan and Suthanthiravanitha [98]
2015 FLC-

based
Hopfield NN Duty

cycle
Buck-boost
converter/DSP

Standalone system/
Simulation,
Prototype

Used PV output voltage and current as inputs, to predict MPP.
Adapted step-sizes via FLC. Able to track effectively under
changing conditions and PSC.

Messalti et al.
[99,100]

2015,
2017

ANN with
fixed and
variable step-
sizes

Duty
cycle

Boost
converter,
Buck-boost
converter/DSP

Standalone system/
Simulation,
Prototype

Took PV output voltage and current as inputs and generated
MPP estimates. Varied step-sizes according to change in PV
output power. Provided fast response with less SS oscillations
under rapidly changing conditions.

Du et al. [101] 2018 Hybrid fuzzy-
weighted ELM
with P&O

Duty
cycle

Boost
converter,
Inverter

Grid-connected
system/Simulation

Classified irradiance level via fuzzy-weighted extreme learning
machine (ELM), an ANN with faster learning rate, to adapt step-
sizes. Searched MPP by P&O. Performed with higher efficiency
than traditional P&O.

Babes et al. [102] 2022 Hybrid ANN
with ACO

Duty
cycle

Boost
converter,
Inverter/DSP

Grid-connected
system/Simulation,
Hardware simulation

Tuned ANN based on PV output power via ACO. Used direct
power control on inverter to compensate reactive power and
reduce harmonics. Outperformed InC and ANN with faster
convergence, less oscillation, and higher efficiency.

Haq et al. [103] 2022 ANN-based
SMC

Voltage Buck-boost
converter

Standalone system/
Simulation

Employed ANN to generate reference voltage for SMC. Tracked
GMPP with faster convergence and higher efficiency than SMC
under various conditions.

Fig. 11. General GA-based MPPT algorithm flowchart [8].

C.R. Çırak and Hüseyin Çalık Engineering Science and Technology, an International Journal 43 (2023) 101436
optimal. These methods also increase the probability of finding the
global optimum amongmultiple extrema. Due to these advantages,
SI algorithms have been increasingly employed as MPPT methods,
particularly during the last decade. Ant Colony Optimization, Parti-
cle Swarm Optimization, Artificial Bee Colony, Firefly Algorithm,
and many other recently developed SI algorithms will be covered
in Section 4.5.1, Section 4.5.2, Section 4.5.3, Section 4.5.4, and Sec-
tion 4.5.5 in order. Additionally, a chronologic literature review on
SI-based MPPT algorithms will be provided at the end of
Section 4.5.
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4.5.1. Ant Colony optimization
Ant Colony Optimization is one of the first and most effective SI

optimization algorithms that was proposed by M. Dorigo in 1991
[112]. ACO is a multi-agent probabilistic search algorithm that is
inspired by the foraging behaviors of ant colonies. ACO is mostly
utilized in combinatorial, stochastic, dynamic, and multi-
objective optimization problems. Besides the discrete optimization
problems, ACO also can be used in continuous or mixed optimiza-
tion problems.

In ACO, artificial ants search for the minimum cost route to the
food source via exchanging information with the colony. Informa-
tion exchange is provided via pheromones released on the routes
by the ants. Artificial ants find and gradually improve solutions
by moving on the selected routes. Solutions evaluated with a prob-
abilistic route selection based on pheromone amounts on the
routes.

In ACO, at the end of each iteration, an ant, which has either the
best solution in the iteration or the best solution since the start of
the algorithm, updates the pheromone amounts as per (28 Þ, and
also, each ant updates pheromone amounts on the last traversed
route as shown in 29ð Þ, where si;j is the pheromone on route
between i and j denoted by Ri;j, s�i;j is updated pheromone, s0 is
the initial pheromone, Dsi;j is defined as 1=Lbest for the length of
the best ant’s path Lbest , and q and r are constants in ð0;1� which
corresponds to pheromone decay coefficient and pheromone evap-
oration rate, respectively. Each ant k selects its new route based on
the likelihood pk

i;j which is calculated as seen in 30ð Þ where gi;j is
inverse of the length of routei;j, l denotes the destinations which
is not yet visited, and a and b are control parameters to specify
the relative effects of pheromone amounts and heuristic informa-
tion, respectively.

s�i;j ¼
1� rð Þsi;j þ r � Dsi;j; if Ri;j is in the best path

si;j; otherwise

�
ð28Þ

s�i;j ¼ 1� qð Þsi;j þ qs0 ð29Þ



Table 11
Literature review on GA-based MPPT algorithms.

Author(s) Year Method Control
Variable

Converter/
Processor

Application/Test(s) Notes and Results

Messai
et al.
[105]

2011 GA-optimized
FLC

Duty
cycle

Boost
converter

Standalone system/
Simulation

Tuned FLC membership functions and inference rules by GA. Implemented
on FPGA. Performed with faster responses and better SS stability than P&O.

Kulaksiz
and
Akkaya
[106]

2012 GA-optimized
ANN with PI
controller

Duty
cycle

Inverter/
DSP

Standalone system/
Simulation, Induction
motor

Utilized GA to optimize ANN. Predicted GMPP voltage by ANN as reference
for PI controller. PI controller regulated inverter frequency based on
voltage to frequency ratio by varying frequency change step-sizes.
Outperformed conventional methods.

Shaiek
et al.
[107]

2013 GA Duty
cycle

Boost
converter

Standalone system/
Simulation

Used GA to optimize MPP voltage online. Able to find GMPP under PSC
where P&O and InC failed. Performed with higher efficiency than P&O and
InC, whereas they converged faster than GA under dynamic conditions.

Daraban
et al.
[108]

2014 Hybrid GA and
P&O

Voltage Buck
converter/
Computer

Standalone system/
Simulation, Hardware
simulation

Optimized MPP by GA. Searched GMPP via P&O with variable step-sizes.
Sped up convergence and reached 97% efficiency overall under changing
irradiance and PSC.

Mohamed
et al.
[109]

2017 Hybrid GA with
FLC and P&O

Duty
cycle

Ćuk
converter/
DSP

Standalone system/
Simulation, Motor
pump set

Optimized MPP voltage via GA. Utilized FLC in MPP adjacency, P&O
otherwise. Used over-current protection for motor. Outperformed P&O and
InC with faster convergence and higher SS efficiency under dynamic
conditions.

Ali et al.
[110]

2021 Hybrid GA with
FLC and ANN

Duty
cycle

Boost
converter,
Inverter

Grid-connected
system/Simulation

Combined GA-based FLC with GA-based ANN into GA-FLC-ANN.
Outperformed P&O, InC, GA-based FLC and PSO-based FLC in convergence
speed and accuracy.

Yadav et al.
[111]

2022 Hybrid GA with
GWO

Duty
cycle

Boost
converter

Standalone system/
Simulation

Parallelized with Gray Wolf Optimizer (GWO) by switching in each
iteration. Able to perform under PSC. Performed with faster responses than
GA and GWO.
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pk
i;j

sa
i;j
gb

i;jP
8Ri;l

sa
i;l
gb

i;l

; if Ri;j is feasible

0; otherwise

8><
>: ð30Þ

In ACO-based MPPT method, a set of voltage, current, or duty
cycle values can be initialized as possible routes. Pheromone
amounts released on these routes can be associated with the PV
array output power which corresponds to the route. Thus, after a
few iterations, the best operating point which corresponds to
MPP can be determined. ACO-based MPPT methods are mostly
used to track GMPP under PSC. The main advantage of the ACO-
based MPPT method is its very fast GMPP convergence ability in
a few iterations.
4.5.2. Particle swarm optimization
Particle Swarm Optimization is a generic SI algorithm which

was proposed by J. Kennedy and R. Eberhart in 1995 [113]. Since
PSO algorithm is a simplified analogy for a social model where it
is inspired by social behaviors of actual swarms such as flock of
birds and school of fish but provides the algorithm without using
any metaphor; it can be considered as the most generalized, repre-
sentative, and popular one among all SI algorithms. PSO can be
easily utilized in linear or nonlinear continuous numerical opti-
mization problems, and it is highly open to minor and major mod-
ifications. Therefore, the popularity of PSO has increased in the last
decade and it is widely employed in applied sciences, particularly
in engineering applications.

PSO performs a collective and collaborative random search in a
bounded space via multiple randomly located artificial agents
called particles that iteratively update and develop their locations;
and thus, inherently converge to a good enough solution that is
probably very close or equal to the optimal solution of a continu-
ous optimization model. In the initialization step, a number of par-
ticles are spread into the search area, on their initial positions. The
initial position of each particle inherently becomes its initial best
position. The best of the best positions remembered by each parti-
cle is assigned as the global best position of the swarm. In each
iteration, first, a velocity vector is calculated for each particle, then
present positions of the particles are updated based on the calcu-
lated velocity vectors. Finally, the updated positions are compared
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to the objective function value. These iterations are continuously
repeated either up to a predetermined maximum number of itera-
tions or until the stopping criterion is satisfied. Stopping criterion
can be selected as the change in the global best position or the
objective function evaluated on it. If the optimum value exists, it
will be found in the global best position at the end of the process.

Mathematical expressions for the velocity vector and the pre-
sent position of the i th particle, which are denoted by v i;j and xi;j
respectively in the j th iteration for i 2 1;2; � � � ;nf g and
j 2 1;2; � � � ; jmaxf g, are calculated as per ð31Þ and 32ð Þ where c1
and c2 are two positive scalars, r1 and r2 are two random variables
which follow a uniform distribution within ½0;1�, w is the inertia of
each particle, pbest;i is the best position remembered by i th particle,
gbest is the global best position for the swarm, n is number of
particles.

v i;j ¼ wv i;j�1 þ c1r1 pbest;i � xi;j�1
� �þ c2r2 gbest � xi;j�1

� � ð31Þ

xi;j ¼ xi;j�1 þ v i;j�1 ð32Þ
In MPPT application, each position can be considered as a volt-

age, current or duty cycle value, and the objective function can be
selected as the output power of the PV array. Then, PSO will solve
the maximization problem for the voltage, current, or duty cycle
that corresponds to GMPP. A flowchart for the general PSO-based
MPPT algorithm is given in Fig. 12.

PSO-based MPPT algorithm can provide fast response, rapid
convergence, and good GMPP accuracy under constant, dynamic,
or PS conditions. A higher number of initialized particles increases
convergence speed, and GMPP accuracy of the PSO, whereas
increases required process power as well. In this case, PSO algo-
rithm can be implemented on a processor with high process power
such as DSP and FPGA that can be costed high. Since PSO is a multi-
agent search algorithm, it will be more convenient to select FPGA,
which can process data very fast in parallel, as the processor.

4.5.3. Artificial bee colony
Artificial Bee Colony is a powerful and efficient SI optimization

algorithm which was proposed by D. Karaboga in 2005 [114]. ABC
is a bio-inspired multi-agent probabilistic search algorithm with a
well-defined metaphor that is based on the intelligence of honey-
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bee swarms. ABC is a very useful optimization tool to solve multi-
dimensional and multi-modal optimization problems since it oper-
ates local, global, and random searches together via different
searching mechanisms. Thus, ABC is capable of getting out of local
optima, even for extreme cases in multi-modal problems and con-
verging to global optimum very fast and efficiently.

ABC algorithm has three types of agents which are employed
bees, onlooker bees, and scout bees. Employed bees operate a local
search mechanism and evaluate nectar amounts of food sources.
Onlooker bees perform a global search mechanism and make
choices of food sources based on nectar amounts. Scout bees stand
for random search mechanism and make nonroutine exploration
for new food sources.

In ABC-based MPPT algorithm, the duty cycle can be considered
as the position of a food source, and the output power of the PV
array is selected as fitness (objective) function, which is evaluated
on a duty cycle, where it can be considered as nectar amount. Then,
ABC algorithm will solve the maximization problem for the duty
cycle which corresponds to GMPP. Duty cycles are initialized as
seen in 33ð Þ, employed bees are placed on these duty cycles and
produce modified duty cycles based on initialized ones as new can-
didate solutions as per 34ð Þ, where Di is generated i th duty cycle
value for index i 2 1;2; � � � ;nf g, n is the maximum number of ran-
domly initialized duty cycles, Dl and Du are the lower and upper
limits for duty cycle values in order, Di� is modified duty cycle
which produced based on Di for randomly selected index
k 2 1;2; � � � ;nf g and i–k, r and m are random variables which fol-
low uniform distributions within 0;1½ � and ½�1;1� respectively,
and output power of the PV array PPV ;i is the fitness function which
corresponds to Di. Then, PPV ;i is compared with PPV ;i� by an
employed bee and if PPV ;i� is greater than PPV ;i, then Di� will be used
instead of Di and Di will be forgotten by the employed bee; other-
wise, there will not be any change. After that, an onlooker bee
makes a probabilistic selection based on the likelihood function
f i which is calculated for Di as shown in ð35Þ, and algorithm iter-
ated. Employed bees are placed on duty cycles again, and steps
are repeated until the stopping criteria are reached. If there is no
further improvement on Di for number of iterations which equals
to a predetermined limit, then Di will be abandoned by the
employed bee, and scout bee will generate a random duty cycle
as per 33ð Þ instead of abandoned one and place her on it.

Di ¼ Dl þ r Du � Dlð Þ ð33Þ
Di� ¼ Di þm Di � Dkð Þ ð34Þ
f i ¼ PPV ;iPn

k¼1
PPV ;k

ð35Þ

ABC-based MPPT method is able to track GMPP with very high
accuracy and very fast convergence dynamic condition and PSC.
Also, ABC can provide effective MPPT with very small SS error;
thus, it operates with very high efficiency. Implementation of
ABC-based MPP algorithm requires high process power, and it
can be implemented on a DSP or a high-power microcontroller.
4.5.4. Firefly algorithm
Firefly Algorithm is another powerful SI optimization algorithm

which was proposed by X.-S. Yang in 2007 [115]. FA is a bio-
inspired multi-agent stochastic search algorithm that is inspired
by the flashing characteristic of fireflies. In FA, it is assumed that
each firefly is attracted by other fireflies, based on their attractive-
ness that are proportional to their brightness and inversely propor-
tional to distances to them. The brightness of each firefly is
evaluated according to the objective function of the optimization
model.
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First, all fireflies are initialized on random locations in a
bounded solution space, and their initial brightness are evaluated
for their initial locations. Then, distance and attractiveness
between each two fireflies are determined as per 36ð Þ and 37ð Þ
respectively where ri;j;h and bi;j;h are distance and attractiveness
between the i th and j th fireflies at h th iteration for
i; j 2 1;2; � � � ;nf g, k 2 1;2; � � � ; kmaxf g, i–j, xi;h and xj;h are the loca-
tions of fireflies i and j at h th iteration, bi;h is attractiveness of
the firefly i at its origin xi;h, c is a constant absorption coefficient
for the brightness, and n is the number of fireflies. Once attractive-
ness between each two fireflies is determined, for each firefly, a
comparison is performed among other fireflies of which attractive-
ness are higher than its own attractiveness. Then, the firefly moves
towards the firefly j�, which has the highest relative attractiveness,
according to 38ð Þ where a is a random scalar which follows uni-
form distribution within 0;1½ � and ei is a vector of random variables
which follow uniform distribution within �0:5;0:5½ �.
ri;j;h ¼ kxi;h � xj;hk ð36Þ

bi;j;h ¼ bi;he
�cr2

i;j;h ð37Þ

xi;hþ1 ¼ xi;h þ bi;j;h xj� ;h � xi;h
� �þ aei ð38Þ

In FA-based MPPT method, duty cycles may be considered as
locations of fireflies, and the output power of the PV array may
be chosen as the objective function, which is evaluated on a duty
cycle, where it corresponds to the brightness of fireflies. Thus,
GMPP can be obtained via FA as the optimal solution for a maxi-
mization problem. FA-based MPPT algorithm is able to provide
high speed convergence, very high GMPP accuracy, very small or
zero SS error, and very high efficiency. FA can be implemented
on DSP or high-power microcontroller.

4.5.5. Other swarm intelligence algorithms
There are many other popular SI algorithms – which have been

adapted for GMPPT methods during the last decade – such as
Glowworm Swarm Optimization (GSO), Cuckoo Search (CS), Grav-
itational Search Algorithm (GSA), Bat-inspired Algorithm (BA),
Fireworks Algorithm (FWA), Grey Wolf Optimizer (GWO), Whale
Optimization Algorithm (WOA), and Salp Swarm Algorithm (SSA).
Additionally, there are much more other recently developed SI
algorithms. Even though most of them may be considered as vari-
ants of well-known SI algorithms, particularly of PSO, with minor
modifications and different metaphors, these algorithms are appli-
cable for high performance GMPPT methods as well.

K. N. Krishnanand and D. Ghose presented GSO in 2006. GSO,
which was inspired by the luminescence of glowworms as similar
to FA, has a movement mechanism like PSO, but it differs in terms
of the adaptive neighborhoods limited by sights of glowworms,
and the probabilistic selection based on fitness values of neighbors
for the direction of movement [116]. CS is a multi-agent random
search algorithm that was developed by X.-S. Yang and S. Deb in
2009 and inspired by the parasitic breeding behavior of cuckoos
[117]. GSA, which was introduced by E. Rashedi, H. Nezamabadi-
pour, and S. Saryazdi in 2009, is a multi-agent random search algo-
rithm like PSO where the movement strategy of agents is based on
Newton’s Law of Universal Gravity [118]. BA, which was proposed
by X.-S. Yang in 2010, is another multi-agent random search algo-
rithm with a PSO-like movement strategy that mimics the echolo-
cation behavior of microbats [119]. Y. Tan and Y. Zhu released
FWA, which was inspired by the explosion of fireworks in 2010.
In FWA, the numbers and locations of the sparks generated by each
explosion are obtained based on the evaluation of fitness, and the
direction of movement is determined via probabilistic selection for
each firework [120]. S. Mirjalili, S. M. Mirjalili, and A. Lewis intro-



Fig. 12. General PSO-based MPPT algorithm flowchart [13].

C.R. Çırak and Hüseyin Çalık Engineering Science and Technology, an International Journal 43 (2023) 101436
duced GWO in 2014. GWO, which imitates the hierarchical group
hunting behavior of grey wolves, has a movement mechanism
based on the positions of three leading wolves and the distances
of wolves from the prey, and a leader selection mechanism based
on fitness function [121]. S. Mirjalili and A. Lewis also introduced
WOA in 2016 with an inspiration of bubble-net hunting behavior
of humpback whales. WOA employs a search mechanism that uti-
lizes encircling strategy over shrinking spirals. [122]. S. Mirjalili
et al. developed SSA in 2017. SSA, which is inspired foraging of salp
chains, has a general movement mechanism based on simplified
kinematic equation of displacement with acceleration where the
leader of salp chain performs a convergent random movement.
[123].

Table 12 presents a chronological literature review on SI-based
MPPT algorithms.
5. Discussion

For choosing a proper MPPT method for a Solar PV system,
MPPT methods should be evaluated in aspects of performance,
implementation, and cost. According to this evaluation, the best-
suited method, which is easy to implement, low-cost, and meets
the requirements, can be chosen. In this section, a comparative
overview in terms of performance, implementation, and cost of
the MPPT methods, which are examined in Section 3 and Section 4
in detail, will be provided in a nutshell.

5.1. Conventional MPPT methods

Conventional MPPT methods provide direct control and are able
to search MPP under constant and dynamic conditions; however,
they are not capable of GMPPT under PSC. Conventional methods
and their modified, adaptive, and hybridized versions with modern
MPPT methods are still in use widely.

5.1.1. Perturbative methods
Perturbative methods such as P&O, InC, and HC are well-studied

and widely used MPPT algorithms up to the present. The popular-
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ity of these methods continues since they can be simply imple-
mented and easy to adapt due to their well-known algorithms.
SS efficiency of fixed step-size perturbative methods is inversely
proportional to step-size. Since larger step-size increases conver-
gence speed, whereas increases SS oscillations as well, it decreases
the MPP accuracy and efficiency. Since smaller step-size decreases
convergence speed, therefore, even though the MPP accuracy and
the SS efficiency increase, the overall efficiency of these methods
decreases. With adaptive step-size perturbative methods, SS oscil-
lations can be significantly decreased whereas converge speed
slightly reduces, and thus better efficiencies can be achieved. Per-
turbative methods can find MPP with reasonable accuracy; how-
ever, none of these methods is capable of GMPPT under PSC, and
their efficiencies decrease dramatically. When P&O, InC, and HC
are compared with each other, contrary to popular belief that InC
outperforms the others, it is revealed that there is no statistically
significant difference between these methods [34,56]. In perturba-
tive methods, one or two sensors are used, and they can be imple-
mented on a low-cost microcontroller since they do not require
complex calculations.

5.1.2. FOV and FSC methods
FOV and FSC MPPT methods may be preferred due to their

simplicity and low-cost implementation. In these methods, an
optimal proportionality constant needs to be determined accord-
ing to the P-V characteristic of the PV array, and MPP is directly
estimated based on the constant. Therefore, they can provide a
fast response under dynamic conditions since they do not need
any convergence; however, their MPP accuracies are low. More-
over, a power loss occurs during the measurement since the load
is disconnected from the PV system. Therefore, efficiencies of
these methods are low. Since the P-V characteristic of the PV
array will change under PSC, these methods are not capable of
GMPPT, and in this case, efficiency cannot be mentioned for
these methods.

5.2. Modern MPPT methods

Modern MPPT methods can provide either direct or indirect
control and are able to search MPP under constant and dynamic
conditions. They are also highly capable of GMPPT under PSC. Mod-
ern MPPT methods and their modified and hybridized versions
with conventional or other modern methods are popular due to
their robust performances and still have been developing.

5.2.1. ACS-based methods
ACS-based methods such as well-known PID control and

robust SMC are another commonly preferred approach for MPPT.
However, the selection of parameters accurately is crucial for
these methods, and this makes implementation relatively diffi-
cult. In these methods, a reference value obtained by other
methods which are mostly conventional can be used. Also, they
can be employed alone in MPPT applications; in that case, the
slope of the P-V curve of the PV array is taken as an error. In
ACS-based methods, SS errors converge to zero, and oscillations
around the MPP are minimized. Thus, these methods have good
MPP accuracies, convergence speeds, and very high SS efficien-
cies. Also, convergence speeds of ACS-based methods are high.
However, both convergence speeds and efficiencies of controllers
may decrease under fast changing conditions. These methods can
track GMPP under PSC with small modifications. In these meth-
ods, besides the output voltage and current of the PV array, the
output voltage and current of the converter can also be mea-
sured; therefore, two to four sensors are employed in general.
If the controller parameters are tuned offline, the algorithm can
be implemented on a low-cost microcontroller. If online-tuning



Table 12
Literature review on SI-based MPPT algorithms.

Author(s) Year Method Control
Variable

Converter/
Processor

Application/Test(s) Notes and Results

Chowdhury and
Saha [124]

2010 Adaptive Perceptive
PSO

Duty
cycle

Buck
converter/
lCU

Standalone system/
Simulation,
Prototype

Used Adaptive Perceptive PSO, a variant that searches in space in
higher dimension. Reached 97.7% SS efficiency under varios PSC,
whereas PSO performed with 96.4%.

Miyatake et al.
[125]

2011 PSO Duty
cycle

Boost
converter/
DSP

Standalone system/
Simulation,
Prototype

Optimized duty cycles of multiple converters in a multi-array PV
system by PSO at once. Able to find GMPP even for complex PS
patterns.

Liu et al. [11] 2012 PSO Duty
cycle

Boost
converter/
DSP

Standalone system/
Simulation,
Prototype

Reinitialized PSO when a change in PS pattern detected based on
changes in PV output power. Reached 99.5% SS efficiency under
various PSC.

Ishaque et al.
[126]

2012 Modified PSO Duty
cycle

Buck-boost
converter/
DSP

Standalone system/
Simulation,
Prototype

Optimized duty cycle based on generated 3 points. Reinitialized
PSO when a change in PV output power occurred. Able to
perform under PSC and fast changing irradiance. Eliminated SS
oscillation and outperformed HC.

Ishaque and Salam
[127]

2013 Hybrid PSO and HC Duty
cycle

Buck-boost
converter/
DSP

Standalone system/
Simulation,
Prototype

Integrated a HC-based local mode into [126] for direct duty cycle
control. Able to track GMPP even under extreme PSC. Reached
99.5% SS efficiency in a 10-hour test.

Jiang et al. [128] 2013 ACO Current Not
specified

Standalone system/
Simulation

Handled PSC by finding local MPPs for each string in PV array.
Reinitialized when a change occurred in a PV string output
current. Able to reach 99.9% SS efficiency under various PSC.
Outperformed P&O but showed similar performance with PSO.

Sundareswaran
et al. [129]

2014 FA Duty
cycle

Boost
converter/
lCU

Standalone system/
Simulation,
Prototype

Applied direct duty cycle according to optimized GMPP.
Reinitialized FA when irradiance suddenly changed.
Outperformed P&O with 99.99% SS efficiency and PSO in tracking
speed and under PSC.

Ahmed and Salam
[130]

2014 Hybrid CS with PID Duty
cycle

Buck-boost
converter/
Computer

Standalone system/
Simulation,
Hardware
simulation

Optimized MPP by CS based on changes in PV output power.
Used PID controller for smooth voltage transition. Performed
faster and more accurate P&O and PSO under PSC.

Benyoucef et al.
[131]

2015 ABC Duty
cycle

Boost
converter/
DSP

Standalone system/
Simulation,
Prototype

Used duty cycle corresponding to MPP optimized by ABC based
on sudden PV output power changes. Outperformed PSO with
98.5–99.8% accuracies under various PSC.

Sundareswaran
et al. [132]

2015 ABC Duty
cycle

Boost
converter/
lCU

Standalone system/
Simulation,
Prototype

Applied duty cycle corresponding to MPP optimized by ABC
based on changes in PV output power, voltage and current.
Obtained 99.2–100% SS efficiencies under 6 PSCs. Outperformed
PSO with faster convergence and higher efficiency.

Sundareswaran
et al. [133]

2015 Hybrid PSO and P&O Duty
cycle

Boost
converter/
lCU

Standalone system/
Simulation,
Prototype

Optimized MPP via PSO based on sudden large PV output power
changes. Used P&O around estimated GMPP adjacency. Reached
99.7% and 100% SS efficiencies under various PSCs. Outperformed
P&O in efficiency and PSO with faster responses.

Sudhakar Babu
et al. [134]

2015 Modified PSO Duty
cycle

Boost
converter/
lCU

Standalone system/
Simulation,
Prototype

Optimized MPP by PSO starting with initial 3 duty cycles
determined analytically based on PV module and the load
parameters. Obtained 98.5–99.7% SS efficiencies under 10 PSCs.
Outperformed InC, HC, and PSO in efficiency, response speed, and
robustness.

Sundareswaran
et al. [135]

2016 Hybrid ACO and P&O Duty
cycle

Boost
converter/
lCU

Standalone system/
Simulation,
Prototype

Used ACO to optimize MPP and P&O for fine-tuning in estimated
GMPP adjacency. Outperformed P&O with 99.9–100% SS
efficiencies and ACO and PSO with faster responses under PSC.

de Oliveira et al.
[136]

2016 PSO Voltage Inverter/
DSP

Grid-connected
system/Simulation,
Prototype

Provided a grid-connected implementation. Reached 99.9% SS
efficiency which was higher than P&O while showing slower
responses under PSC.

Teshome et al.
[137]

2016 Modified FA Duty
cycle

Boost
converter/
DSP

Standalone system/
Hardware
simulation

Simplified FA by using average position of brighter fireflies
instead of each individual one. Rose FA SS efficiency from 99.1%
to 99.8% and response speed by 40%.

Mohanty et al.
[138]

2016 GWO Duty
cycle

Boost
converter/
DSP

Standalone system/
Simulation,
Hardware
simulation

Able to perform under different PSCs. Outperformed P&O with
99.9% SS efficiency and improved PSO faster responses.

Titri et al. [139] 2017 Modified ACO Duty
cycle

Boost
converter

Standalone system/
Simulation

Modified selection and updating process of ACO. Outperformed
P&O, FLC, ANN, PSO, and ACO under PSC, in terms of SS efficiency
and convergence speed.

Koad et al. [140] 2017 Modified PSO Duty
cycle

Ćuk
converter

Standalone system/
Simulation

Used a modified PSO similar to [126] with addition of Lagrangian
interpolation step. Reached 98% and 100% efficiencies under PSC
and dynamic conditions. Performed with higher SS efficiency and
convergence speed than P&O, InC, and PSO.

Manickam et al.
[141]

2017 Hybrid FWA and
P&O

Duty
cycle

Boost
converter/
DSP

Standalone system/
Prototype

Find MPP by FWA based on PS detection via changes in PV
conductance and output power. Used P&O for fine-tuning in
estimated GMPP adjacency. Sped up convergence with higher
accuracy and reduced oscillations.

Kaced et al. [142] 2017 BA with Random
Walk

Duty
cycle

Buck-boost
converter/
FPGA

Standalone system/
Simulation,
Prototype

Optimized MPP via BA based on PV output power changes. Used
Random Walk around estimated GMPP. Outperformed P&O and
PSO with 99.9% SS efficiency under PSC.

Soufi et al. [143] 2017 Hybrid PSO and FLC Duty
cycle

Boost
converter

Standalone system/
Simulation

Optimized FLC membership functions via PSO. Able to track
GMPP in extreme atmospheric conditions without SS error and
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Table 12 (continued)

Author(s) Year Method Control
Variable

Converter/
Processor

Application/Test(s) Notes and Results

faster convergence than PSO and P&O.
Jin et al. [144] 2017 GSO Duty

cycle
Boost
converter

Standalone system/
Simulation

Tested under various atmospheric conditions and PSC. Able to
show fast convergence and high GMPP accuracy. Outperformed
P&O and FOV in all test cases.

Sen et al. [145] 2018 Modified PSO Duty
cycle

Boost
converter/
DSP

Standalone system/
Simulation,
Hardware
simulation

Modified PSO weight factor and acceleration coefficients by
dividing with open-circuit voltage. Sped up convergence,
reduced SS oscillations, and rose GMPTT accuracy and overall
efficiency. Obtained over 99% tracking efficiency for all PSCs.

Li et al. [146] 2018 Modified GSA Duty
cycle

Boost
converter

Standalone system/
Simulation

Improved GSA with adaptive Gravitational constant change
factor and modified particle velocity updating formula.
Outperformed PSO and GSA in convergence speed, GMPP
accuracy, and overall efficiency under various dynamic
conditions and PSC.

Pilakkat and
Kanthalakshmi
[147]

2019 Hybrid ABC and P&O Duty
cycle

Boost
converter

Standalone system/
Simulation

Identified GMPP region by ABC based on irradiation changes.
Utilized P&O for fine-tuning. Obtained 99.6–99.9% SS efficiencies
under different PSCs. Outperformed P&O with less overshoots
and higher accuracy, tracking speed, and efficiency.

Yang et al. [148] 2019 Leader-based SI
algorithms

Duty
cycle

Buck-boost
converter/
DSP

Standalone system/
Simulation,
Hardware
simulation

Used leader-based MPPT method employing 5SI algorithms: PSO,
ABC, GWO, Moth-flame Optimization (MFO), and WOA. Shared
individual algorithms’ info with leader in each iteration.
Outperformed individual SI algorithms under various conditions
and PSC.

Mirza et al. [149] 2020 SSA Duty
cycle

Boost
converter/
DSP

Standalone system/
Simulation,
Hardware
simulation

Obtained 99.3% average efficiency. Provided faster convergence
and higher efficiency than P&O, GA, PSO, CS, PSO-GSA, and
Dragonfly algorithm under various PSC.

Tao et al. [150] 2021 Hybrid WOA and
Pattern Search-
based ANFIS with
InC

Duty
cycle

Boost
converter,
Inverter

Standalone system/
Simulation

Optimized ANFIS parameters via WOA and Pattern Search.
Combined ANFIS with InC. Outperformed conventional methods
and FLC in tracking efficiency, convergence speed, and SS
oscillations under changing conditions.

Moghassemi et al.
[151]

2022 Improved hybrid
WOA and DE

Duty
cycle

Boost
converter,
Inverter

Standalone system/
Simulation

Used WOA and Differential Evolution (DE) together to speed up
responses under PSC. Employed DE for broad searching and WOA
for local searching. Provided faster convergence than WOA, DE,
and WOA-DE in various PSCs.
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via AI-based control and optimization algorithms is used to track
MPP with higher efficiency, higher-cost controllers such as DSP
or FPGA are needed. Although ACS-based MPPT methods are
more successful than conventional methods in terms of perfor-
mance, they cost higher in general.

5.2.2. AI-based methods
FLC-based MPPT methods work like ACS-based methods, with

the addition of fuzzy membership functions and inference rules.
However, determining membership functions is a complex process
and makes the implementation of FLC difficult. In FLC-based MPPT
methods, the input is classified based on the membership func-
tions, and then output is generated with a logic that is similar to
a look-up table. FLC has high MPP accuracy, SS efficiency, and con-
vergence speed. FLC can also track GMPP under PSC. FLC-based
MPPT methods are usually employed by hybridizing with conven-
tional MPPT methods. Also, membership functions of FLC may be
auto tuned via optimization methods such as ANN, GA, and SI.
Thus, convergence speed and GMPP accuracy can be increased. In
FLC-based MPPT methods, one or two sensors are used. Tuning
algorithms for membership functions and calculations for the
interference rules require high process power; hence high-cost
processors such as DSP or FPGA are needed for FLC-based MPPT
methods.

ANN and GA methods are mostly used by hybridizing with FLC
and conventional MPPT methods. Thus, GMPPT methods with high
efficiency, convergence speed, and GMPP accuracy can be obtained.
It is complicated to implement ANN algorithms due to model train-
ing periods that can last too long. GA can be easily implemented in
comparison to ANN. In these methods, besides the usage of voltage
and current sensors, it may be required to measure irradiance and
19
temperature values. For the implementation of ANN and GA meth-
ods, high process power processors such as DSP, FPGA, or CPUmust
be employed. Therefore, ANN and GA are considered high-cost
MPPT methods.

Along with ever-developing SI algorithms, the performance of
MPPT methods employing these algorithms has increased gradu-
ally. Efficiencies, convergence speeds, and GMPP accuracies of SI-
based MPPT methods are very high. Particularly, SI-based MPPT
algorithms, which include hierarchical evaluation mechanisms
such as ACO and ABC and the ones that use simplified math such
as GWO and SSA may provide faster convergence than classical
PSO-like SI-based MPPT methods [129,132,135,138,149]. More-
over, implementation and adaptation of these methods that are
generalized by PSO, in a similar approach, are relatively straight-
forward. Typically, voltage and current sensors are employed
together in these methods. Process power requirements of SI-
based methods vary based on the chosen parameters. For obtain-
ing higher performance, a high-cost processor with high process
power such as DSP or FPGA is needed. Additionally, via employ-
ing perturbative methods in local MPPT based on reference
GMPP found by the SI algorithms, process power requirement
may get lowered, and thus, the obtained high performance SI-
based hybrid MPPT method may be implemented on a low-
cost microcontroller.

SI-based MPPT algorithms, which superseded GA and ANN
before, have become more popular than all other MPPT methods
recently. Most of SI algorithms are also used in MPPT applications
in parallel right after their development. Where the current num-
ber of developed SI algorithms exceeded a hundred, it may be fore-
seen that SI-based MPPT algorithms will become more prevalent in
the near future.



Table 13
Comparison of MPPT methods.

Method Performance Implementation Cost

Tracking Efficiency MPP Accuracy Convergence Speed GMPPT Capability Algorithm
Complexity

Required Process
Power

P&O with fixed step-size Medium High to Low# Slow to Very Fast# No Simple Low Low
P&O with variable step-size High High Fast No Medium Medium Medium
InC with fixed step-size Medium High to Low# Slow to Very Fast# No Medium Medium Medium
InC with variable step-size High High Fast No Medium Medium Medium
HC with fixed step-size Medium High to Low# Slow to Very Fast# No Simple Low Low
HC with variable step-size High High Fast No Medium Medium Medium
FOV Low Low Not applicable No Very Simple Very Low Low
FSC Low Low Not applicable No Very Simple Very Low Low
FLC High High Fast Yes Complex High Medium
FLC with online tuning Very High High Fast Yes Very Complex Very High High
PID High High Fast Yes Medium Low Medium
PID with online tuning Very High High Fast Yes Complex High High
Fractional-order PID Very High Very High Fast Yes Complex High High
SMC High High Fast Yes Complex High High
ANN High Very High Fast Yes Very Complex Very High High
GA High Very High Fast Yes Complex High High
ACO Very High High Very Fast Yes Complex High High
PSO Very High High Fast Yes Medium High High
Modified PSO Very High Very High Fast Yes Complex Very High High
ABC Very High Very High Very Fast Yes Complex High High
FA Very High Very High Fast Yes Complex High High
GSO Very High High Fast Yes Complex High High
CS Very High High Fast Yes Complex High High
GSA Very High Very High Fast Yes Medium High High
BA Very High Very High Fast Yes Complex High High
FWA Very High Very High Fast Yes Medium High High
GWO Very High Very High Very Fast Yes Medium High High
WOA Very High Very High Fast Yes Complex High High
SSA Very High Very High Very Fast Yes Medium Medium High
# While step-size is increasing from small to large.
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5.3. General evaluation of MPPT methods

General evaluation of MPPT methods comes through compar-
isons over performance and capabilities, implementation require-
ments, and application cost. A general evaluation may give an
intuition about what kind of MPPT methods can meet which type
of needs by fitting in limitations. In this respect, a general evalua-
tion of MPPT methods is helpful as a starting point in selecting a
proper MPPT method for an application. On the other hand, each
specific MPPT application is highly dependent on its implementa-
tion details including both in software and hardware side. The
selection of a best-suited MPPT method for an application is
directly related to the needs and limitations of the application.
Therefore, a general evaluation of MPPT methods should not be
regarded as a certain assessment. The selection of the best-suited
MPPT method for an application requires an additional specific
evaluation per the needs and limitations.

Comparison of various MPPT methods should also not be taken
as a precise inference about the methods. Due to the nature of
MPPT concept, it is essentially an optimization problem. Concor-
dantly, each MPPT method employs an optimization algorithm or
approach. Hence, MPPT methods are subject to no free lunch theo-
rems for optimization [152]. This means that no MPPT method will
be able to give the best results for all aspects in every application.
Each MPPT method has its own strengths and weaknesses. For
example, perturbative methods may provide faster convergence
than most of the modern MPPT methods under uniform irradiance,
however, they cannot guarantee accurate tracking under PSC. Yet,
the majority of MPPT research papers that propose a new MPPT
method, including many of the highly cited prestigious ones exam-
ined in this review, come up with a result that the proposed
method just outperformed all the compared MPPT methods in all
aspects and all test cases. These contradictory results may be
20
obtained by either only including the comparisons with the MPPT
methods that are outperformed by the proposed method or only
applying tests for the specific cases in which the proposed method
works better. A more reliable comparison of various MPPT meth-
ods requires a more general outlook rather than comparing a pro-
posed method with a few selected MPPT methods for a few test
cases.

A comparison of MPPT methods, which are encompassed in this
study, with a general outlook on the aspects of performance,
implementation, and cost is provided in Table 13.
6. Conclusion

This study categorically presents the fundamental approaches
of more than twenty MPPT methods with their variations used in
Solar PV systems, and usages, advantages, and disadvantages of
them. Besides the commonly used MPPT methods, new MPPT algo-
rithms, which have started to be used in recent years, are also
encompassed. Detailed literature reviews, including significant
studies for each MPPT method covered in this paper, are chrono-
logically provided. In the literature reviews consisting of more than
a hundred prestigious studies conducted over the last decade,
basics and differences of the proposed method, implementation
details, used hardware, and simulation and experiment results,
including the performance of the proposed method and its com-
parison with other methods, are examined. Additionally, a general
comparative evaluation of the encompassed methods is presented.

This study aims to be a guide that may be useful for interested
consumers, producers, and researchers and shed light on the last
decade of maximum power point tracking methods for photo-
voltaic systems. To guide the ones who may use or work on MPPT
methods, which conduce to effective and efficient usage of Solar PV
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systems, a comprehensive examination that enables to track the
developments in MPPT methods during the last decade and shows
the current orientation and hotspots in the field is introduced.
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