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Bordetella pertussis is the primary agent of the acute respiratory disease pertussis. It has been reported
that the disease has recently become more common, especially in adults and adolescents, and adaptation
of the pathogen is thought to have an important influence on the recurrence of the disease. This study
aims to determine the effect of erythromycin, azithromycin, and trimethoprim-sulfamethoxazole used in
the treatment of pertussis on the virulence gene expressions (prn, ptxS1, fhaB), biofilm-forming and

Key WOTdS: . growth of B. pertussis. In this study, the minimum inhibitory concentration (MIC) values of azithromycin
Q?;é?:;cmbms and erythromycin in B. pertussis local strain Saadet were determined to be 0.09 pg/mL and 0.3 pg/mL,
Growth curve respectively. However, the Tohama-I and Saadet strains were resistant to trimethoprim-
Sub-mic sulfamethoxazole (MIC>32 pg/mL). The biofilm-forming of the Saadet strain decreased with the in-

crease in antibiotic doses. It was observed that 1/32MIC erythromycin and 1/32MIC azithromycin
upregulated the expression of fhaB in Tohama-I, whereas the expression of ptxS1 and prn significantly
decreased in sub-MICs of erythromycin. In the Saadet strain, only ptxS1 was highly expressed at 1/16MIC
azithromycin and erythromycin (p > 0.05). This is the first study to investigate the effect of sub-MIC
antibiotics on the expression of virulence genes and biofilm-forming of B. pertussis.

© 2023 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Antibiotics should be used in successive doses at a concentration
above the minimum inhibitory concentration (MIC) to be effective
against bacterial pathogens. Lower concentrations of antibiotics
than the MICs are referred to as sub-minimum inhibitory concen-
trations (sub-MIC) and reflect the conditions of bacteria in the
natural environment and in tissues [1]. These lower doses of anti-
biotics can select resistant bacteria, increase the rate of adaptive
evolution, and affect various physiological activities of the micro-
organism, including virulence, biofilm formation, and gene
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expression [2]. Therefore, it is important to understand the effects
of sub-MIC antibiotic doses on bacterial cells.

Pertussis (whooping cough) is a contagious respiratory disease
with dramatic consequences for the elderly, immunocompromised
persons, pregnant women, and especially infants. It is one of the
infectious diseases whose severity decreases with antibiotics,
especially when used in the catarrhal phase [3]. The main causative
agent of this disease is Bordetella pertussis, which binds to the
epithelial cells, especially ciliated, of the trachea and bronchi of the
host's lungs [4]. This bacterium has many important virulence
factors that can evade the host defences, attach to the respiratory
system, and cause damage [5]. Filamentous haemagglutinin (Fha),
pertussis toxin (Ptx), and pertactin (Prn) are among the important
virulence factors that effectively cause the disease and are used as
vaccine components. Fha is the surface and secretion protein of
B. pertussis which is responsible for adhesion to the bronchial
epithelial cells of the host and the colonisation of the entire res-
piratory tract [6]. Prn is one of the surface proteins that mediate

0923-2508/© 2023 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.


mailto:burcutefon@akdeniz.edu.tr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.resmic.2023.104058&domain=pdf
www.sciencedirect.com/science/journal/09232508
http://www.elsevier.com/locate/resmic
https://doi.org/10.1016/j.resmic.2023.104058
https://doi.org/10.1016/j.resmic.2023.104058

E. Delik, B. Eroglu, C.Y. Colak et al.

attachment to lung epithelial cells by playing a role in adhesion and
colonisation [3,4]. Ptx is responsible for the irreversible activation
of adenylate cyclase, which leads to excessive cAMP accumulation
in the cell and prevents many cellular functions of the host [3,4].
This bacterium also forms a biofilm in the respiratory tract [4]. The
biofilm is responsible for the persistence of the bacteria in the
nasopharynx and for the formation of a successful infection [7].

Antibiotics are commonly used to treat the disease to reduce the
symptoms of pertussis and reduce the incidence of transmission by
eliminating the microorganism that causes the disease from the
nasopharynx [8]. Erythromycin and azithromycin, a semisynthetic
antibiotic derived from erythromycin, are bacteriostatic, which
inhibit the growth of B. pertussis by blocking protein synthesis by
reversibly binding the 50S subunit of the ribosome [9]. Azi-
thromycin, the first azalide, has better tolerability, a broader
spectrum of activity, and a better drug—interaction profile than
erythromycin [10]. Trimethoprim-sulfamethoxazole (TMP-SMX) is
the recommended antimetabolite that inhibits folic acid synthesis
in patients who cannot tolerate macrolides, and this antibiotic has
been reported to effectively clear B. pertussis from the nasopharynx
[11]. It is known that pathogenic species of Bordetella spp. develop
antibiotic resistance easily; however, the frequency of acquired
resistance to the antimicrobial agents used in clinical has been
notably low. But there are some reports which indicate the emer-
gence of erythromycin resistance, especially in China, among
B. pertussis. [12,13]. As the resurgence of pertussis has become an
issue again [14], it is very important to study the antibiotic sus-
ceptibility and pathogenesis of the bacteria, as well as protection by
vaccines and new vaccine trials. However, there are not enough
studies on the antibiotic resistance of B. pertussis and the effect of
sub-MIC doses of antibiotics on these bacterial cells. In our previous
study, we reported the effects of sub-MIC doses of azithromycin
and erythromycin used in the treatment of pertussis, on the growth
rate and biofilm-forming capacity of B. pertussis Tohama-I [15]. In
this study, the sub-MIC levels of these antibiotics against the local
Saadet strain of B. pertussis were investigated, and their effects on
the biofilm-forming capacity and growth rate were examined. In
addition, the MIC of TMP-SMX, another antibiotic used against
pertussis, was investigated for both strains. This study also exam-
ined the effects of sub-MIC levels (1/16, 132, and 1/64) of these
antibiotics on ptxS1, prn, and fhaB gene expression in the Tohama-I
and Saadet strains.

2. Material and method
2.1. Strain of B. pertussis

The B. pertussis strains used in this study were Tohama-1 and
the local strain Saadet. The bacteria were provided by Prof. Dr.
Meral Dilara Ogiin¢ (Akdeniz University, Antalya, Turkiye). As Sato
and Arai [16] stated in their study, the bacteria were grown on a
modified Cohen-Wheeler (CW) agar medium, at 37 °C for 48 h, and
subcultures were prepared for this study.

2.2. Determination of MIC levels of antibiotics

The determination of MIC values of bacteria against azi-
thromycin, erythromycin, and TMP-SMX antibiotics was carried out
using the broth dilution method [17]. The Clinical and Laboratory
Standards Institute (CLSI) and the European Committee on Anti-
microbial Susceptibility Testing (EUCAST) have not yet established
limits for MIC values of antibiotics for the B. pertussis [18]. For this
reason, the MIC values of antibiotics were determined according to
Hoppe et al. [17]. Fresh bacterial cells were adjusted to 0.5 McFar-
land in 0.85% NaCl (Merck, Germany) and transferred to antibiotic-
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containing Morse—Bray broth (MB). Antibiotic-free bacterial cul-
tures were established as positive controls. In the first step, cultures
of antibiotics in a wide concentration range (0.005, 0.01, 0.05, 0.1,
0.5, 1, and 5 pg/mL) were established. The prepared cultures were
incubated at 150 rpm and 37 °C for 96 h. Then, the lowest antibiotic
concentration without bacterial growth and the highest concen-
tration with growth was determined as the MIC range. For the TMP-
SMX, additional higher antibiotic concentrations (10, 20, 30, 40, 50,
100 pg/mL) were tried. The bacterial cultures with the antibiotics
were reconstituted according to the determined MIC intervals, and
the lowest antibiotic concentration without bacterial growth was
determined as the MIC. The experiments were performed in 3
replicates.

To determine the MIC levels of TMP-SMX against bacterial
strains, the E-test method was used [19]. Freshly grown bacterial
cultures were adjusted to 0.5 McFarland in 0.85% NaCl and spread
on CW agar medium. Commercially produced E-test strips
(0.002—32 pg/mL) (Bioanalyze, Ankara, Turkiye) were then placed
on the medium according to the manufacturer's instructions. After
incubating the prepared media at 37 °C for 96 h, the inhibition
zones were analysed. Staphylococcus aureus (ATCC 29213) strain
was used as the MIC quality control [20]. The experiments were
performed in 3 replicates.

2.3. Effect of sub-MIC doses on the growth rate of bacteria

Similar to the studies by Nikbin et al. [21], the growth curve of
bacteria was generated at sub-MICs of antibiotics. The concentra-
tions of fresh bacterial cells were adjusted to an initial concentra-
tion of 0.05 at 600 nm wavelength in MB broth. Antibiotic-
containing bacterial cultures were established at sub-MICs of 1/2,
1/4, 1/8, 1/16, 1/32, and 1/64 of the determined MIC levels.
Antibiotic-free bacterial cultures were set up as a control group. The
cultures were incubated at 150 rpm, and 37 °C, and the ODggo
values were measured and recorded every 12 h for 120 h. The ex-
periments were performed in 3 replicates.

2.4. Effect of sub-MICs on biofilm production

The biofilm-forming capacity of bacteria was observed using the
slightly modified method of Conover et al. [22]. Freshly grown
B. pertussis cells were adjusted to a concentration of 0.1 cells at
ODggp in the MB medium. Antibiotic bacterial suspensions were
then prepared to obtain the desired sub-MICs at the final concen-
tration, and 200 pL were added to a 96-cell culture plate. The blank
MB was used as a negative control and the antibiotic-free bacterial
suspension was used as the positive control. The prepared samples
were incubated at 37 °C for 96 h under static conditions. After in-
cubation, the plates were washed with sterile water and dried for
25 min at 37 °C. Then, 200 pL of a freshly prepared 0.1% crystal
violet solution (Merck, Germany) was added to each well and
stained for 30 min at room temperature. After that, the plates were
washed thoroughly three times with distilled water. Then 200 pL of
ethanol (95%) was added to the wells to dissolve the dye and
measure the absorbance values of the samples at a wavelength of
590 nm. The experiments were performed in 3 replicates.

2.5. Total RNA extraction and cDNA synthesis

Bacterial cells were incubated in MB broth containing 1/16,1/32,
and 1/64 sub-MICs of antibiotics for 48 h at 37 °C at 150 rpm. Total
RNA was isolated using a total RNA isolation kit (Zymo Research,
USA) according to the manufacturer’s recommendations. The purity
and quantity of total RNA obtained were determined using a
NanoDrop spectrophotometer (Thermo Scientific, USA). In addition,
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1.5% agarose gel electrophoresis was performed to visualize the
isolated RNA. Subsequently, cDNA synthesis was performed from
the isolated RNA, following the instructions of the commercially
available cDNA synthesis kit (Jena Bioscience, Germany). The syn-
thesised cDNAs were stored at —20 °C for later use.

2.6. Quantitative PCR (qPCR) assays

gPCR reactions were performed to analyse the expression levels
of ptxS1, prn, and fhaB, which confer important virulence charac-
teristics to B. pertussis. The rpoB was used as a housekeeping gene,
and the synthesised primers of the relevant gene regions are listed
in Table 1.

The qPCR analyses were performed using the QuantiNova SYBR
Green PCR Kit (Qiagen, Hilden, Germany) in accordance with the
manufacturer's instructions. The 20 pL PCR mixture contained 2X
SYBR Green PCR master mix, 10 pM forward and reverse primers
and 0.1 ng template DNA. All reactions were prepared as triplicate
and analysed with RotorGene Q 5plex HRM (Qiagen, Hilden, Ger-
many). PCR initial activation step of 95 °C for 2 min followed by 40
cycles of 95 °C for 5 s, 60 °C for 10 s was applied. Standard curves
were formed by four logs dilution series and E values were gener-
ated. Reaction tubes without cDNA were prepared to control for
nucleic acid contamination (non-template control). Melting curve
analysis was carried out to analyse the accuracy of the experiments.
gPCR analyses of each gene region were performed in triplicate. The
virulence gene expression levels were normalised to the levels of
rpoB gene transcripts. The relative expression levels of cultures
with antibiotics were compared with cultures without antibiotics,
and the data were analysed using the 2784CT method.

2.7. Statistical analysis

Each test was performed in triplicate; results were expressed as
the mean of 3 independent experiments. Statistical analysis was
performed with one-way analysis of variance (ANOVA), and Tukey’s
test for multiple comparisons (IBM SPSS 22 software was used
(SPSS, USA)) [26]. Values were considered statistically significant
when p < 0.05.

3. Results
3.1. Determination of MIC levels of antibiotics

In this study, the MICs of the antibiotics erythromycin and azi-
thromycin against the B. pertussis Saadet strain were determined
(Table 2). Since the MIC of TMP-SMX for both B. pertussis strains
could not be determined by the broth dilution method and E-test,
the remaining experiments were performed with erythromycin
and azithromycin. The S. aureus strain used as a control for the E-
test was able to form an inhibition zone and the results were in
accordance with the CLSI standard (Fig. S1) [27].
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Table 2
MIC levels of antibiotics against B. pertussis.

Strains Azithromycin (pg/mL) Erythromycin (ug/mL) TMP-SMX (pg/mL)
Tohama-I 0.08% 0.2° >32
Saadet 0.09 0.3 >32

4 MIC data of our previous study [15].

3.2. Effect of sub-MIC doses on the growth rate of bacteria

The data on the effects of antibiotics on the growth rate of
B. pertussis at sub-MICs is shown in Fig. 1. Similar to a previous
study with Tohama-I [15], it was observed in Saadet that the
growth of the bacteria was significantly slowed at sub-MIC
antibiotic doses, and growth was strongly inhibited in the
presence of 12, 14, and 1/8MICs of antibiotics (p < 0.05). It was
found that the growth rate of Saadet was close to control at MICs
of 132 and 1/64 of azithromycin and MIC of 1/64 of erythromycin
compared with other MICs of antibiotics. However, the bacterial
growth of the samples at this MIC values was statistically
significantly lower compared to the bacterial growth of the
control group (p < 0.05).

3.3. Effect of sub-MICs on biofilm production

In this study, the ability of the Saadet strain to form a biofilm
was investigated using the crystal violet assay at different sub-
MIC levels of erythromycin and azithromycin (Fig. 2). Similar to
our previous study with Tohama-I [15], the highest biofilm-
forming capacity was observed in antibiotic-free cultures and
was statistically different from all antibiotic-containing cultures
(p < 0.05).

3.4. Effects of sub-MICs on gene expressions

To investigate the effect of erythromycin and azithromycin on
the expression of prn, ptxS1, and fhaB, mRNAs were isolated in the
mid-log phase, and it was found that sub-MICs of azithromycin and
erythromycin had different effects on the expression of virulence
genes (Fig. 3). In Tohama-I, the expression of ptxS1 was statistically
significantly decreased in all sub-MICs of erythromycin (p < 0.05).
In Saadet, ptxS1 was overexpressed at 1/16MICs of azithromycin
and erythromycin; the fold change was 1.7 and 1.2, respectively
(p > 0.05) (Table S1). In both isolates, the expression of prn was
downregulated by erythromycin. However, the expression was
significantly downregulated by azithromycin only in Saadet
(p < 0.05). In contrast, in Tohama-I, the expression of prn was
slightly increased by azithromycin (p > 0.05). In Tohama-I, fhaB
expression was significantly upregulated by azithromycin and
erythromycin in 1/32MICs (p < 0.05). In Saadet, it was significantly
downregulated by azithromycin and 1/16MIC of erythromycin
(p < 0.05).

Table 1
Primers used in qPCR analysis and their amplification product sizes.
Gene Primers Amplicon size (bp) References
ptxS1 Forward primer: 5'-TTCCAGAACGGATTCACGGC -3’ 112 [23]
Reverse primer: 5'-TGCTGCTGGTGGAGACGAA -3’
prn Forward primer: 5'- TGCCGACTGGAACAACCA-3’ 73 [24]
Reverse primer: 5'- GTCGGAGCCCTGGATATGG-3'
fhaB Forward primer: 5-TGTCCGCCATGGAGTATTTCA- 3’ 153 [25]
Reverse primer: 5'-CCCAAATGTACTCGTAGCGATTC-3’
rpoB Forward primer: 5'- GCTGGGACCCGAGGAAATCA-3’ 93 [23]

Reverse primer: 5'- GCGCCAATGTAGACGATGC-3’
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Fig. 1. The effects of sub-MICs on the growth rate (Control: B. pertussis grown in an antibiotic-free environment, A: Azithromycin, E: Erythromycin).
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4. Discussion

TMP-SMX is still used for treating pertussis and is generally
recommended for the treatment of patients 2 months of age and
older who cannot tolerate macrolides or are infected with a
B. pertussis strain resistants to macrolides [8,28,29]. Interestingly,
according to the results, both Tohama-I and Saadet were highly
resistant to this antibiotic. Similarly, Dorji et al. [30] investigated
the antimicrobial susceptibility of 21 clinical B. pertussis isolates in
Western Australia and reported that Tohama-I and all other isolates
were resistant to TMP-SMX. However, Lonnqvist et al. [31] studied
the prevalence and antimicrobial susceptibility of B. pertussis
strains in Finland and reported that all the strains they used were
susceptible to TMP-SMX. TMP-SMX was introduced in the 1970s,
and there are few studies supporting the use of this antibiotic in the
treatment of pertussis [8]. Henry et al. [32] found that bacteria
could be re-isolated in patients after ten days of the 7-day treat-
ment regime of TMP-SMX. The results of this study and the inter-
pretation of other studies in the literature raise several questions
regarding the effectiveness of TMP-SMX in treating pertussis.

In this study, Saadet was more sensitive to azithromycin than to
erythromycin (Table 2). In previous studies, researchers also spec-
ulated that Saadet was superior to Tohama-I in terms of repro-
duction, toxigenicity, and antigenicity [33,34]. Lonnqvist et al. [31],
in their study in Finland to determine the antimicrobial suscepti-
bility of B. pertussis strains, found that the MIC levels of isolates
ranged from 0.016 to 0.9 pg/mL for azithromycin and
0.016—0.25 pg/mL for erythromycin, and identified no isolates
resistant to azithromycin and erythromycin. However, Mi et al. [13],
in their study found that 78 of the 125 B. pertussis isolates they used
were resistant to erythromycin and azithromycin (MIC>256 mg/L).
Hua et al. [12] reported that 95 of 126 B. pertussis strains they used
in their study were resistant to erythromycin, azithromycin, and
clindamycin (MIC>256 mg/L). They also reported that a macrolide-
resistant B. pertussis isolate was detected in four patients who did
not receive antibiotic treatment.

There is not enough up-to-date study in the literature on the
effects of sub-MIC doses of antibiotics on the growth rate of
B. pertussis cells. Hewlett et al. [35] investigated the inhibitory and
lethal effects of chlorpromazine for Bordetella species. They re-
ported that 1/2 and 1/4MICs of this antibiotic inhibited B. pertussis
growth. There are studies conducted with many different bacteria
that have investigated the effects of sub-MIC doses of antibiotics on
bacterial growth. Reeks et al. [36] stated that 1/8 and 1/16MICs of
chlortetracycline and chlortetracycline-sulfamethazine signifi-
cantly impaired the growth of Mannheimia haemolytica and Hae-
mophilus somnus. Feng et al. [37] studied the effects of sub-MICs of
ceftazidime on the pathogenicity of Escherichia coli. They stated
that bacterial growth at 14 and 1/8MICs did not differ with the
control group; therefore, they used 14MIC antibiotic doses in their
other studies. Similarly, in this study, B. pertussis cells were able to
tolerate 1716, 132, and 1/64MICs. For this reason, the effects of these
determined sub-MIC doses of antibiotics on the biofilm-forming
capacity of B. pertussis were investigated.

Biofilms can play a role in bacterial resistance. Bacteria in a
biofilm are generally 100—1000 times more resistant to important
substances than corresponding populations of planktonic bacteria
[38]. In the Saadet strain grown in an antibiotic-containing medium
the amount of biofilm decreased in parallel with the increase in the
antibiotics’ doses (p < 0.05), similar to our previous study with
Tohama-I [15]. In their study, Dorji et al. [30] classified the
B. pertussis strains with absorbance values above 1.204 as strongly
biofilm-forming strains. Accordingly, we also classified the control
group in this study as a strong biofilm-forming strain because the
absorbance was higher than 1.204. However, Saadet showed

Research in Microbiology 174 (2023) 104058

moderate biofilm formation at 1/16 and 1/32MICs of erythromycin
(absorption value < 1.204). Cattelan et al. [39], showed in their
study of B. pertussis strains in the USA and Argentina that the
amount of biofilm produced by circulating strains was significantly
higher than that of the Tohama-I. However, we have seen that the
biofilm formation of Tohama-I and Saadet is similar in comparison.

The literature search shows that there has been no study on the
effects of sub-MIC doses of antibiotics on the capability of
B. pertussis cells to form biofilms. However, there are studies that
have been conducted with many different bacterial species. For
example, in their study on the effects of sub-MIC doses of azi-
thromycin, curcumin, and gentamicin on Pseudomonas aeruginosa
cells, Bahari et al. [40] reported that 1/4 and 1/16MICs significantly
decreased the bacteria’s ability to form biofilms and reported that
biofilm formation decreased in parallel with the increase in sub-
MIC used. Some studies have reported that sub-MICs of antibi-
otics induce biofilm formation in some bacterial species. Liu et al.
[41] studied the effect of a sub-MIC dose of norfloxacin on biofilm-
forming capacity and virulence gene expression in Streptococcus
suis. They reported that bacteria formed more biofilms at a 14MIC
of norfloxacin and that biofilm contained more live bacteria at this
dose. Yousefpour et al. [42], in their study investigating the biofilm
formation of P. aeruginosa at sub-MICs of gentamicin, reported that
31.3% of isolates at 1/2 and 1/4MICs of gentamicin showed a sig-
nificant increase in biofilm formation ability. In this study, sub-
MICs of azithromycin and erythromycin reduced the biofilm for-
mation ability of B. pertussis cells.

Different types of antibiotics’ low concentrations can act like
chemical molecules and affect various processes, including patho-
genicity. Liu et al. [43] mentioned that this interaction could affect
strains with different resistance traits differently. Ptx, Prn, and Fha
are important virulence factors of B. pertussis, and they are present
in all pertussis vaccines. The literature review shows that there is
no study on the effects of sub-MIC antibiotic doses on the gene
expression of B. pertussis cells. Examination of gene expressions
showed that azithromycin differentially affected the expression of
the virulence genes of B. pertussis Tohama-I. While the prn gene was
upregulated at all sub-MIC concentrations of azithromycin, the
expressions of the ptxS1 and fhaB genes were found to change with
the concentration of the antibiotic. The expression of the fhaB gene
was found to increase statistically significantly at a 1/32 concen-
tration of azithromycin. The expression of the ptxS1 and prn genes
was also downregulated at the sub-MIC levels of erythromycin in
the Tohama-I strain (p < 0.05). Expression of the fhaB gene showed
a statistically significant increase at the 1/32 MIC level of erythro-
mycin, just as with azithromycin. In the Saadet strain, gene
expression was generally decreased at sub-MIC concentrations of
azithromycin and erythromycin; only ptxS1 gene expression was
increased at 1/16 sub-MIC azithromycin and 1/16 sub-MIC eryth-
romycin concentrations (p > 0.05). Atshan et al. [44] investigated
the effects of daptomycin and tigecycline sub-MICs on the expres-
sion of genes involved in S. aureus adhesion and biofilm. They re-
ported that sub-MICs caused an increase in some strains and a
decrease in some strains in the expression levels of the genes they
specifically studied. As with the results of this study, the sub-MIC
dose of an antibiotic can increase the expression of one gene,
while the same dose can decrease the expression level of another
gene. Similarly, Sadredinamin et al. [45], in their study investigating
the effects of sub-MIC azithromycin and ciprofloxacin doses on
different virulence factors in Shigella serogroups, reported that in
the presence of sub-MIC azithromycin in serotype 4a, the icsA gene
was upregulated, while other genes in the virF pathway were
downregulated. Navidifar et al. [46] investigated at the expression
levels of genes involved in Acinetobacter baumannii biofilm for-
mation in sub-MICs of meropenem and tigecycline. They founded
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that the expression levels of genes in AB55 and AB13 strains did not
regularly increase or decrease with the increase of tigecycline dose.
Liu et al. [41], in their study investigating the effect of a sub-MIC
dose of norfloxacin on biofilm formation and virulence gene
expression of S. suis, reported that the expression of the sly, ef, cps,
gapdh, and gdh genes increased in 1/4MIC, while the expression of
the mrp gene decreased. In addition, gene expression did not in-
crease or decrease in parallel with the increase in sub-MICs in this
study.

In conclusion, the overuse and indiscriminate use of antibiotics
have led to an increase in resistant bacteria around the world,
which is a public health concern given the lack of effective anti-
microbials, especially for children. Our findings indicated that
although TMP-SMX is one of the antibiotics used in treating
pertussis in some children, the Tohama-I and Saadet strains in this
study were resistant to this antibiotic. In the present study, it is also
reported the modulatory effects of sub-MIC doses of azithromycin
and erythromycin on biofilm formation, growth rate, and virulence
gene expression. It was observed that sub-MICs of antibiotics
resulted in a decreased ability for biofilm formation and growth
rate of B. pertussis. Furthermore, the effects of these doses on the
expression of ptxS1, prn, and fhaB were quite variable, which can be
explained by the different transcriptional changes that occur in the
presence of each antibiotic at low concentrations. This bacteria may
have different regulatory pathways in response to environmental
stresses. More work is needed to determine the existence and
regulation mechanisms of these pathways. Data in this study
indicate that it is very important to study the vital activities and
pathogenicity of B. pertussis exposed to sub-MICs of antibiotics. To
obtain sufficient information on the contribution of sub-MIC doses
of antibiotics to the treatment process of pertussis, the results ob-
tained in this study should be supported by large-scale studies with
more isolates and molecular experiments.
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