Drought Forecasting Using Genetic Programming Association With Southern Oscillation Indices
8th Atmospheric Sciences Symposium - ATMOS 2017, Istanbul/TÜRKİYE, 1 Kasım 2017, s. 121-125
BİÇKİCİ ARIKAN BUĞRAYHAN,KAHYA ERCAN
|
Short-Term Meteorological Drought Forecasting Using Hybrid Data-Driven Techniques
KARADENIZ 12th INTERNATIONAL CONFERENCE ON APPLIED SCIENCES, Rize/TÜRKİYE, 3 Mart 2023
EKMEKCİOĞLU ÖMER
|
Forecasting palmer drought severity index using hybrid wavelet-heuristic models
Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, 2019
AKBAR JALILZADNEZAMABAD
|
Forecasting Of Soil Water Content Using Support Vector Regression Method For Agricultural Drought
American Meteorological Society (AMS) 27th Conference on Weather Analysis and Forecasting, 29 Haziran 2015
ASLAN TOPRAK,BAYDAROĞLU ÖZLEM,KOÇAK KASIM,ŞAYLAN LEVENT
|
Entropy Based Variability and Support Vector Regression Based Forecast of Drought Index
American Meteorological Society (AMS) 27th Conference on Weather Analysis and Forecasting, 29 Haziran 2015
BAYDAROĞLU ÖZLEM,KOÇAK KASIM,ŞAYLAN LEVENT
|
A gene–wavelet model for long lead time drought forecasting
Journal of Hydrology, Vol. 517, Eylül 2014, s. 691-699, ISSN: 0022-1694
DANANDEH MEHR ALI,KAHYA ERCAN,ÖZGER MEHMET
|
Long term PDSI drought forecasting using genetic programming a case study in Konya province Turkey
Soft computing in water resources engineering, Nicosia/KUZEY KIBRIS TÜRK CUMHURİYETİ, 29 Kasım 2016
BİÇKİCİ ARIKAN BUĞRAYHAN,KAHYA ERCAN
|
Comment on “Comparison of the Ability of ARIMA, WNN and SVM Models for Drought Forecasting in the Sanjiang Plain, China” by Yuhu Zhang, Huirong Yang, Hengjian Cui, and Qiuhua Chen, in Natural Resources Research DOI: 10.1007/s11053-019-09512-6
Natural Resources Research, Vol. 29, No. 2, Nisan 2020, s. 1465-1467, ISSN: 1520-7439
BAŞAKIN EYYUP ENSAR,EKMEKCİOĞLU ÖMER
|
Drought Forecasting Using Integrated Variational Mode Decomposition and Extreme Gradient Boosting
Water MDPI, Vol. 15, No. 19, Eylül 2023, s. 3413-3413, ISSN: 2073-4441
EKMEKCİOĞLU ÖMER
|
Comment on “Comparison of the Ability of ARIMA, WNN and SVM Models for Drought Forecasting in the Sanjiang Plain, China” by Yuhu Zhang, Huirong Yang, Hengjian Cui, and Qiuhua Chen, in Natural Resources Research DOI: 10.1007/s11053-019-09512-6
Natural Resources Research, Vol. 29, No. 2, Nisan 2020, s. 1465-1467, ISSN: 1520-7439
BAŞAKIN EYYUP ENSAR,EKMEKCİOĞLU ÖMER
|
Extended lead time accurate forecasting of palmer drought severity index using hybrid wavelet-fuzzy and machine learning techniques
JOURNAL OF HYDROLOGY, Vol. 601, Ekim 2021, ISSN: 0022-1694
ALTUNKAYNAK ABDÜSSELAM, JALİLZADNEZAMABAD AKBAR
|
Long Lead Time Drought Forecasting Using a Wavelet and Fuzzy Logic Combination Model A Case Study in Texas
Journal of Hydrometeorology, Vol. 13, No. 1, Şubat 2012, s. 284-297, ISSN: 1525-755X
ÖZGER MEHMET,ASHOK K MİSHRA,VİJAY P SİNGH
|
A gene wavelet model for long lead time drought forecasting
Journal of Hydrology, Vol. 517, Eylül 2014, s. 691-699, ISSN: 00221694
ALİ DANANDEH MEHR,KAHYA ERCAN,ÖZGER MEHMET
|