ARAMA SONUÇLARI

Toplam 34 adet sonuçtan 20 tanesi görüntülenmektedir.

Arama









Yıllara göre arama

Özel Aralık Girişi

Bayesian reinforcement learning with MCMC to maximize energy output of vertical axis wind turbine
Mühendislik ve Fen Bilimleri Enstitüsü, Sabancı Üniversitesi, 2019
ARDA AĞABABAOĞLU
Ahmet Onat Tez Yüksek Lisans Tamamlandı
Quadcopter trajectory tracking control using reinforcement learning
Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, 2019
MUSTAFA ERDEM
Erdinç Altuğ Tez Yüksek Lisans Tamamlandı
A novel state space representation for the solution of 2D HP protein folding problem using reinforcement learning methods
Applied Soft Computing, Vol. 26, Ocak 2015, s. 213-223, ISSN: 15684946
DOĞAN BERAT,ÖLMEZ TAMER
Tamer Ölmez Özgün Makale
Automated Lane Change Decision Making using Deep Reinforcement Learning in Dynamic and Uncertain Highway Environment
2019 IEEE Intelligent Transportation Systems Conference (ITSC), 27 Ekim 2019
ALİZADEH ALİ,BİÇER YUNUS,MOGHADAM MAJİD,ÜRE NAZIM KEMAL,YAVAŞ MUHARREM UĞUR,KURTULUŞ CAN
Nazım Kemal Üre Tam metin bildiri
Courier routing and assignment for food delivery service using reinforcement learning
Computers & Industrial Engineering, Vol. 164, Şubat 2022, ISSN: 0360-8352
BOZANTA AYSUN, ÇEVİK MÜCAHİT, KAVAKLIOĞLU CAN, KAVUK ERAY, TOSUN KÜHN AYŞE, SONUÇ SİBEL BİLGE, DURANEL ALPER, BENER AYŞE
Ayşe Tosun Kühn Özgün Makale
Enhancing Situational Awareness and Performance of Adaptive Cruise Control through Model Predictive Control and Deep Reinforcement Learning
2019 IEEE Intelligent Vehicles Symposium (IV), 9 Haziran 2019
ÜRE NAZIM KEMAL,YAVAŞ MUHARREM UĞUR,ALİZADEH ALİ,KURTULUŞ CAN
Nazım Kemal Üre Tam metin bildiri
Tuning Scaling Factors of Fuzzy Logic Controllers via Reinforcement Learning Policy Gradient Algorithms
ICMRE 2017 Proceedings of the 3rd International Conference on Mechatronics and Robotics Engineering, Paris, France, Paris/FRANSA, 8 Şubat 2017
TAVAKOL AGHAEI VAHID,ONAT AHMET
Ahmet Onat Tam metin bildiri
Tuning Scaling Factors of Fuzzy Logic Controllers via Reinforcement Learning Policy Gradient Algorithms
Proceedings of the 3rd International Conference on Mechatronics and Robotics Engineering - ICMRE 2017, Ocak 2017, ISSN: 978-145035280-2
TAVAKOL AGHAEI VAHID, ONAT AHMET
Ahmet Onat Özgün Makale
Motion Planning and Control with Randomized Payloads on Real Robot Using Deep Reinforcement Learning
International Journal of Semantic Computing, Vol. 13, No. 04, Aralık 2019, s. 541-563, ISSN: 1793-351X
DEMİR ALİ,SEZER VOLKAN
Volkan Sezer Özgün Makale
Rat hippocampal neurons correlate with reward magnitude above and beyond running speed or acceleration during reinforcement learning
Society for Neuroscience Conference, San Diego, CA/AMERİKA BİRLEŞİK DEVLETLERİ, 13 Kasım 2010
OKATAN MURAT,DONEGAN MACAYLA,OWENS CULLEN,EICHENBAUM HOWARD
Murat Okatan Özet Bildiri
Magnitude of expected and received reward modulates the firing patterns of hippocampal CA1 neurons during reinforcement learning
ICCNS-2009, Boston MA, ABD., No. 1, 1 Mayıs 2009, s. 36
OKATAN MURAT,OWENS CULLEN,KOMOROWSKI ROBERT,EICHENBAUM HOWARD
Reward related prospective and retrospective spiking activity in hippocampal neurons during reinforcement learning
Program No. 101.16. 2009 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2009. Çevrimiçi., No. 1, 1 Eylül 2009, s. 1
OKATAN MURAT,OWENS CULLEN,EİCHENBAUM HOWARD
Order dispatching for an ultra-fast delivery service via deep reinforcement learning
Applied Intelligence, Ocak 2021, ISSN: 0924-669X
KAVUK ERAY MERT, TOSUN AYŞE, ÇEVİK MÜCAHİT, BOZANTA AYSUN, SONUÇ SİBEL BİLGE, TÜTÜNCÜ MEHMETCAN, KOŞUCU BİLGİN, BENER AYŞE
Ayşe Tosun Kühn Özgün Makale
Bayesian reinforcement learning with MCMC to maximize energy output in hardware-in-the-loop simulations of vertical axis wind turbine
Mühendislik ve Fen Bilimleri Enstitüsü, Sabancı Üniversitesi, 2021
USAMAH YAASEEN OSMAN
Ahmet Onat Tez Yüksek Lisans Tamamlandı

İLETİŞİM BİLGİLERİ

İstanbul Teknik Üniversitesi Rektörlüğü İTÜ Ayazağa Kampüsü Rektörlük Binası, Maslak-Sarıyer / İstanbul Tel: +90 212 285 3930