ARAMA SONUÇLARI

Toplam 26 adet sonuçtan 20 tanesi görüntülenmektedir.

Arama









Yıllara göre arama

Özel Aralık Girişi

Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm
Elsevier BV, Vol. 341, Nisan 2023, ISSN: 0306-2619
TAVAKOL AGHAEI VAHID, AĞABABAOĞLU ARDA, BAWO BİRAM, NASERADİNMOUSAVİ PEİMAN, YILDIRIM SİNAN, YEŞİLYURT SERHAT, ONAT AHMET
Ahmet Onat Özgün Makale
A deep reinforcement learning assisted simulated annealing algorithm for a maintenance planning problem
Annals of Operations Research, Vol. 339, No. 1, Ağustos 2024, s. 79-110, ISSN: 0254-5330
KOSANOĞLU FUAT, ATMIŞ MAHİR, TURAN HASAN HÜSEYİN
Fuat Kosanoğlu Özgün Makale
Integrating Feature Engineering, Genetic Algorithm and Tree-Based Machine Learning Methods to Predict the Post-Accident Disability Status of Construction Workers
Automation in Construction, Vol. 131, Kasım 2021, s. 103896-103896, ISSN: 0926-5805
KOÇ KERİM, EKMEKCİOĞLU ÖMER, GÜRGÜN ASLI PELİN
Ömer Ekmekcioğlu Özgün Makale
Biomedical Application of a Random Learning and Elite Opposition-Based Weighted Mean of Vectors Algorithm with Pattern Search Mechanism
Springer Science and Business Media LLC, Ekim 2022, ISSN: 2195-3880
DEMİRÖREN AYŞEN, İZCİ DAVUT, EKER ERDAL, EKİNCİ SERDAR
Ayşen Demirören Özgün Makale
Developing a Self-Learning Based Method that Can Be Used as a Reinforcer of PID Control Algorithm and / or an Alternative to PID
Fen Bilimleri Enstitüsü, Sabancı Üniversitesi, 2020
COŞKU ISPALAR
Ahmet Onat Tez Yüksek Lisans Devam Ediyor
MATERIAL PARAMETER DETERMINATION OF SIMPLIFIED COOPERATIVE VISCOPLASTICITY THOERY BASED ON OVERSTRESS FOR NANOCOMPOSITES USING GENETIC ALGORITHM OPTIMIZATION METHOD
Machine Learning fro Micromechanics – First WG4 on-site workshop, February 22-23, 2024, Louvain/BELÇİKA, 22 Şubat 2024
ÇOLAK ÇAKIR ÖZGEN ÜMİT,ÇAKIR YÜKSEL
Yüksel Çakır Özet Bildiri

İLETİŞİM BİLGİLERİ

İstanbul Teknik Üniversitesi Rektörlüğü İTÜ Ayazağa Kampüsü Rektörlük Binası, Maslak-Sarıyer / İstanbul Tel: +90 212 285 3930