ARAMA SONUÇLARI

Toplam 15 adet sonuçtan 15 tanesi görüntülenmektedir.

Arama









Yıllara göre arama

Özel Aralık Girişi

Multi Channel Brain EEG Signals Based Emotional Arousal Classification with Unsupervised Feature Learning using Autoencoders
2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 15 Mayıs 2017
AYATA DEĞER,YASLAN YUSUF,KAMAŞAK MUSTAFA ERSEL
Multi Channel Brain EEG Signals Based Emotional Arousal Classification with Unsupervised Feature Learning using Autoencoders
2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 15 Mayıs 2017
AYATA DEĞER,YASLAN YUSUF,KAMAŞAK MUSTAFA ERSEL
Inpainting by deep autoencoders using an advisor network
2017 25th Signal Processing and Communications Applications Conference (SIU), 15 Mayıs 2017
DEMİR UĞUR,ÜNAL GÖZDE
Gözde Ünal Tam metin bildiri
Improving sample efficiency in reinforcement learning control using autoencoders
Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, 2023
BURAK ER
Mustafa Doğan Tez Yüksek Lisans Tamamlandı
Integrating fuzzy logic into deep autoencoders for interpretability and clustering
Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, 2021
KUTAY BÖLAT
Tufan Kumbasar Tez Yüksek Lisans Tamamlandı
Interpreting Variational Autoencoders with Fuzzy Logic: A step towards interpretable deep learning based fuzzy classifiers
2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 19 Temmuz 2020
BÖLAT KUTAY,KUMBASAR TUFAN
Tufan Kumbasar Tam metin bildiri
Deep learning frameworks to learn prediction and simulation focused control system models
Springer Science and Business Media LLC, Vol. 52, No. 1, Ocak 2022, ISSN: 0924-669X
TUNA TURCAN, BEKE AYKUT, KUMBASAR TUFAN
Vehicle Logo Recognition with Reduced-Dimension SIFT Vectors Using Autoencoders
International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), 2 Eylül 2017
TÖREYİN BEHÇET UĞUR,KESER REYHAN KEVSER,ERGUN ESRA
Behçet Uğur Töreyin Tam metin bildiri
Graph Embedding For Link Prediction Using Residual Variational Graph Autoencoders
2020 28th Signal Processing and Communications Applications Conference (SIU), Gaziantep/TÜRKİYE, 5 Ekim 2020
KESER REYHAN KEVSER, NALLBANİ INDRİT, ÇALIK NURULLAH, AYANZADEH AYDIN, TÖREYİN BEHÇET UĞUR
Behçet Uğur Töreyin Tam metin bildiri
Music Genre Classification Using Acoustic Features and Autoencoders
2021 Innovations in Intelligent Systems and Applications Conference (ASYU), Antalya/TÜRKİYE, 6 Ekim 2021
ATAHAN YUNUS, ELBİR AHMET, KESKİN ABDULLAH ENES, KİRAZ OSMAN, KIRVAL BÜLENT, AYDIN NİZAMETTİN
Nizamettin Aydın Tam metin bildiri
Surrogate Unsteady Aerodynamic Modeling with Autoencoders and Long-Short Term Memory Networks
2022 AIAA Scitech Forum, San Diego (Online)/AMERİKA BİRLEŞİK DEVLETLERİ, 3 Ocak 2022
TEKASLAN HÜSEYİN EMRE, DEMİROGLU YUSUF, NİKBAY MELİKE
Vehicle Logo Recognition with Reduced-Dimension SIFT Vectors Using Autoencoders
International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), 2 Eylül 2017
TÖREYİN BEHÇET UĞUR,KESER REYHAN KEVSER,ERGUN ESRA
Reyhan Kevser Keser Tam metin bildiri
Graph Embedding For Link Prediction Using Residual Variational Graph Autoencoders
2020 28th Signal Processing and Communications Applications Conference (SIU), 5 Ekim 2020
KESER REYHAN KEVSER, NALLBANİ İNDRİT, ÇALIK NURULLAH, AYANZADEH AYDİN, TÖREYİN BEHÇET UĞUR
Reyhan Kevser Keser Tam metin bildiri
Real time detection of acoustic anomalies in industrial processes using sequential autoencoders
EXPERT SYSTEMS, Vol. 38, No. 1, Ocak 2021, s. 1-12, ISSN: 1468-0394
BAYRAM BARIŞ, DUMAN TAHA BERKAY, İNCE GÖKHAN
Gökhan İnce Özgün Makale
Enhancing construction productivity prediction through variational autoencoders and graph attention network
3rd International Civil Engineering and Architecture Congress (ICEARC’23), Trabzon/TÜRKİYE, 12 Ekim 2023
MOSTOFİ FATEMEH, TOĞAN VEDAT, TOKDEMİR ONUR BEHZAT
Onur Behzat Tokdemir Tam metin bildiri

İLETİŞİM BİLGİLERİ

İstanbul Teknik Üniversitesi Rektörlüğü İTÜ Ayazağa Kampüsü Rektörlük Binası, Maslak-Sarıyer / İstanbul Tel: +90 212 285 3930